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The credit belongs to the man who is actually in the arena, whose face is marred by dust

and sweat and blood; who strives valiantly; who errs, who comes short again and again,

because there is no effort without error and shortcoming; but who does actually strive to

do the deeds; who knows great enthusiasms, the great devotions; who spends himself in a

worthy cause; who at the best knows in the end the triumph of high achievement, and who

at the worst, if he fails, at least fails while daring greatly, so that his place shall never be

with those cold and timid souls who neither know victory nor defeat.

Theodore Roosevelt
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SUMMARY

Understanding how neurons of the brain communicate, connect, and respond to stimuli

is a fundamental goal of neuroscience. Whole-cell patch clamp recording in vitro repre-

sents the gold standard method for measuring electrophysiology of single neurons because

of its high spatiotemporal resolution. However, the manual and time-consuming nature of

patch clamping experiments have limited the throughput and number of cells that can be

sampled per day. To improve the throughput for these single-cell experiments, the goal of

this dissertation was to (1) integrate automated patch clamp with discovery experiments

for cellular indicators and effectors, (2) develop a machine learning algorithm for real-time

neuron detection of neurons in brain slices for in vitro patch clamping, and (3) create a

coordinated, multi-pipette patch clamp algorithm for enabling high throughput synaptic

connectivity studies. Towards these aims, this thesis demonstrated the first robotic system

to perform ligand-gated ionotropic receptor protocols autonomously leading up to a 10-

fold reduction in research effort over the duration of the experiment. I showed the robot

can rapidly replicate an 8-point concentration response curve of the effect of propofol on

GABAAR deactivation from likely weeks to 13 hours of recording. In addition, I integrated

the fully automated patch clamp robot to discover a brighter and more sensitive chemige-

netic voltage indicator, Voltron2, over its predecessor exhibiting 3-fold higher sensitivity in

response to sub-threshold membrane potential changes. Towards the second aim, I devel-

oped a novel, deep learning-based method able to accomplish automated, real-time neuron

detection in brain slice at 18 frames per second with high precision and trained with a small

data set of 1138 annotated neurons. The final aim of this thesis describes the first ever fully

automated, multipatching robot able to ”walk” across a brain slice in a coordinated route

plan to efficiently probe for local synaptic connections between neurons. The combination

of these technologies has created a bouquet of tools to enable high-efficiency, single-cell

experiments that yield multiple types (”multimodal”) of cellular electrophysiology data.

xix



CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Introduction

Patch clamp recording is a gold-standard technique for the accurate measurement of single-

cell membrane voltage fluctuations, synaptic currents, and ionic channel activity in neurons

[1, 2]. Using a glass micropipette to form a physical seal with a small patch of membrane on

a target cell, one can directly record with high temporal (>10 kHz) and voltage resolution

(<1 mV) the electrical activity of the cell, fully avoiding interfering signals from other

neurons. The sensitivity of patch clamp recording has uniquely permitted the recording of

current signals in an individual ion channel [3] and synapse [4]. Whole-cell patch clamping,

a variant of the technique in which the patch of membrane is ruptured to obtain access to

the cell cytosol, has been used to characterize synaptic plasticity [5], study sub-cellular

compartments [6], and elucidate connectivity among nearby neurons [7].

Typically, whole-cell patch clamp studies are performed under microscope guidance,

allowing a direct visualization of cells [8]; however, “blind” patch clamp recording, in

which pipette Resistance (R) is used as a proxy to detect cell contact is also possible [9].

The majority of patch clamp studies are currently performed on cultured cells adhered to a

substrate or in slices of living brain tissue even though patch clamp recording in-vivo has

yielded unique insight into the function of single cells in physiologically relevant states

[10].

An example sequence of steps in a whole-cell electrophysiology experiment in brain

slices is as follows (Figure 1.1 shows the main steps):

1. Visually identify a brain region of interest under low magnification (4x).

2. Visually identify a target cell suitable for patch clamp recording using differential
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Figure 1.1: Whole-cell patch clamp sequence. Copyright Axol Biosciences Ltd.

interference optics (DIC) under high magnification (e.g. 40x) in the brain region of

interest. A cell is generally picked by distinguishing morphological characteristics

or the perceived health of its cell membrane, but may also be picked based on the

presence of a fluorescent marker.

3. Several (10-100) microns above the slice, find the patch clamp pipette under the high-

magnification objective and apply positive pressure to the pipette by mouth or with a

syringe. This positive pressure is not acute and is constant until Step 6.

4. Descend pressurized pipette to a relative distance (∼10 µm) above target cell.

5. Approach target cell slowly while monitoring the position of the cell and the pipette

tip, the internal pressure in the pipette, and the electrical resistance.

6. Form a gigaseal (> 1 GΩ Gigaseal Resistance (RGS)) with the cell by releasing pos-

itive pressure and applying slight suction. Apply a holding voltage of -70 mV before

break-in.
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7. Break into the cell by applying brief suction pulses to the pipette and monitoring the

response to the membrane test.

8. Detect successful break-in by observing low holding current at -70 mV and capacitor

transients in response to square wave voltage pulses. This is done in voltage clamp

where we clamp the membrane voltage to -70 mV and look at the required current to

hold it there. This is just an example method and for different amplifiers, it may be

advantageous to enter into current clamp.

1.1.1 Limitations of patch clamp recording

The immense diversity of neuronal cell types in the brain and their sparse connections

create a tremendous demand for large sets of single-cell data that current patch clamp

technologies cannot fulfill. Cell type classification of neurons remains a “holy grail” of

neuroscience. Defining highly specific classes of neurons is difficult because of their inher-

ent electrophysiological, morphological, and genetic variability, even within a single class.

Thus, it becomes necessary to use large datasets that enable the creation of sufficiently

defined borders between cell types.

The difficulty of collecting these data has resulted in many small-scale studies of cell

characterization, e.g. n=21 [11], n=89 [12], n=27 [13] but precious few with >100 cells

[14]. The low throughput from patch clamping has made it difficult to form a unified

taxonomy of cell types. A notable attempt to do so is the recent effort by the Allen Institute

for Brain Science (AIBS) aimed at creating a catalog of cells in the mouse primary Visual

area I (VI) cortex. This ambitious, multi-year project is set to profile thousands of neurons

using patch clamping; however, with the current throughput limitations of the technique, it

is not clear if these efforts can be replicated in other brain regions or by any other lab or

institution in the future.

The sparse connections between neurons are fundamentally important to brain function

but are difficult to study in large numbers. Inter-neuronal connections form the foundation
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of learning and memory and faulty connectivity patterns can give rise to neurological dis-

orders [15]. Despite the importance of these connections, there is a dearth of large-scale

single-cell connectivity studies, owing to the compounded difficulty of patch clamping

multiple neurons simultaneously as well as the inherently low inter-neuronal connection

probabilities. For instance, studies of brain regions with low ( 2%) connection probabilities

will yield only 39 connections in 2,000 dual-patch recordings [16]. Recent advances in

micromanipulator stability and electronic multiplexing have enabled eight and twelve si-

multaneous patches [17] which dramatically increases the number of connections that can

be sampled simultaneously. This increase in throughput has led to impressive studies with

the number of total patches numbering in the thousands, e.g. >8,000 [18], >2,500 [19],

>1,000 [20], >11,000 [21]. However, those studies still require hundreds of experiments

and the high-channel patch clamp technique still requires tremendous skill, dexterity and

experience to set up and use, and is thus far from a “benchtop” tool for analyzing neuronal

connectivity.

In stark contrast to the thousands of data points necessary to sufficiently identify a cell

type or profile a synaptic connection, only a handful of cells are typically patched in a single

day by an experimenter. The low throughput from patch clamping is primarily a result of

two factors: first, neurons in brain slices die over the course of the experiment; 12+ hours

after slicing the brain, it is thought that most neurons visible under DIC are unsuitable for

patch clamping [22]. Second, the highly manual nature of patch clamp experiment which

requires extensive attention, skill, and dexterity is physically and psychologically taxing

on the investigator. Given the highly repetitive yet demanding nature of the task, when

large datasets are necessary, many advantages of patch clamp recording are offset by its

low throughput.
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1.1.2 Automation of patch clamp recording

Several automation technologies have emerged to alleviate some of the manual tasks in

patch- clamping. Fully-automated systems have been developed for patching onto dissoci-

ated cells [23]. These planar patch clamp devices automatically capture dissociated cells

suspended in solution into an etched cavity which replaces the conventional patch clamp

pipette. While these systems are widely used in pharmacology due to their high throughput

[24, 25], they are not suitable for substrate-adhered (non-dissociated) cells or cells in sliced

brain tissue, making them impractical for studying neurons in culture or brain slice.

For conventional (pipette-based) experiments, several hardware and software technolo-

gies have been crucial to reducing the complexity and increasing the throughput of each

trial. On the hardware side, commercially available motorized actuators and XY transla-

tion stages have enabled precise, motorized manipulation of a pipette to a target cell. Once

a cell is approached, automated pipette pressure control via an “Autopatcher” device de-

veloped in our lab enables one to automatically form a gigaseal with the target neuron and

break-in to reach the Whole-cell (WC) configuration [26].

Various software packages take advantage of the motorized and automated hardware to

automate portions of the patch clamp trial. The LinLab and PatchVision software pack-

ages (Scientifica Ltd.) allow users to move pipette actuators to pre-defined positions, keep

pipettes in view while moving the sample, and customize the function of stage and manip-

ulator control devices. Free, open-source software packages such as Micro-Manager [27],

Ephus [28], and Acq4 [29] effectively combine multiple acquisition and manipulation de-

vices to create a unified user interface for patch clamp recording and photostimulation.

While these software packages automate electrophysiology experiments after a whole-cell

configuration has been reached, they do not automate the patch clamp procedure itself. Re-

cently, a custom multi-electrode patch clamp system automated multi-pipette positioning

and seal formation with up to 12 pipettes [30].

The hardware and software developments mentioned above have sped up experiments
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and enabled more convenient user interaction with scientific equipment but do not com-

pletely automate a full in-vitro microscope-guided patch clamp experiment. That is, for all

the mentioned solutions, a skilled and experienced user is still required to (1) manually nav-

igate the pipette to the target cell and (2) replace pipettes after each patch clamp attempt.

Thus, existing technologies do not automate microscope-guided patch clamp recording to

the level of an autonomous, independently functioning system. While there are concerns

that an automated system will not match the flexibility and experience of a trained user

[17], few would argue that high-throughput patch clamp data collection will be possible

without major automation efforts.

To improve the throughput and reduce the barrier to entry for these high value exper-

iments, the Forest lab recently developed the “patcherBot,” a robot (Figure 1.2) that au-

tomatically performs whole-cell recordings in adherent cells and acute, mouse brain slice

by algorithmically detecting and recording from individual cells using Image-Guided (IG)

techniques with pipette reuse allowing for fully, unattended patch clamping experiments

(workflow in Figure 1.3). The patcherBot can obtain data at a rate of 16 cells (adherent)

per hour and work with no human intervention for up to 3 hours [31]. Using such an au-

tomated system, we were able to identify a myriad of patch clamping developments that

were enabled due to the controlled, automated ability of the patcherBot. For instance, we

discovered that pipette cleaning can be improved by a factor of three [32], and that gigaseal

success probability is a product of distance from the pipette to the cell. With the validation

of the patcherBot, it has enabled the potentially transformative application towards high-

quality measurements of single cells for discovery experiments such as drug screening,

protein functional characterization, and other multimodal cell type investigations.

1.1.3 Pharmacology in patch clamping

Many alternative methods and machines have been developed that attempt to accelerate the

collection of data that approximates what patch-clamp electrophysiology can achieve, such
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Figure 1.2: Cartoon of the previously published PatcherBot (Kolb et al. 2019), assembled
from an upright microscope, high sensitivity camera, custom pressure control box, quasi-4
axis electrode manipulator, and a motorized stage..

as activity-sensitive fluorometric probes and high-throughput machines that patch dissoci-

ated cells on planar patch-clamp “chips” [33, 34, 35, 36]. However, these methods sacrifice

the high precision of patch-clamp electrophysiology in order to achieve higher throughput.

For instance, fluorometric probes must be tuned to a specific application, and fully resolv-

ing the kinetics or full activity of ionotropic receptors is typically not possible. Imaging

experiments also cannot control for confounding voltage fluctuation associated with the

measured response. Additionally, for high-throughput patch-clamp systems, performance

is limited by their solution handling capabilities, and cost of both equipment and supplies

are prohibitive for many studies. Most of these methods are also incapable of measuring

cells that are adherent or embedded in tissue [28, 29, 34, 37, 38].

Thus, an implementation of the patcherBot that enables automated intracellular pharma-

cological electrophysiology would enable substantially faster acquisition of drug screening

datasets. The “patcherBotPharma” can perform pharmacological concentration-response

experiments and can record ligand-gated ionotropic receptor response to fast agonist expo-

sure (millisecond exchange time) with automated control of the microscope, bath solution,

a solution manifold, and a piezoelectric translator. We observe a high-throughput rate of

the patcherBotPharma unattended, with further improvement using minimal operator as-
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Figure 1.3: The first step is to load the pipette electrode onto the manipulator. The second
step is to calibrate the tip of the pipette in the field of view on the microscope. The third
step is to pick cells of interest to patch. The fourth step is to hunt (Neuron hunting (NH))
for the cell and come into contact with it with the electrode. After contact, a gigaseal is
attempted and if successful, the pipette ‘breaks-in’ to the cell for a whole-cell configura-
tion. Afterwards, electrophysiology recordings are conducted. After the data recording,
the pipette is retracted and sent to be cleaned for reuse. The green boxes represent the fully
automated portions of the patcherBot.

sistance. We show the capabilities of the patcherBotPharma by replicating a conventional

dataset substantially faster — with considerably less human effort — than we had done

previously. The increased efficiency enabled by this patch-clamp electrophysiology system

creates the potential to address scientific questions that were previously considered imprac-

tical because of large, time-consuming requirements needed to complete data acquisition

using conventional approaches.

1.1.4 Optogenetic engineering in patch clamping

Similar to how intracellular electrophysiology is important for pharmacology drug screen-

ing, whole-cell patch clamping is extremely important in screening for genetically encoded

voltage indicators and effectors (GEVIs and opsins). Optogenetics is a form of protein mu-

tation within an adherent cell or neuron that allows the use of light stimulation to change

the membrane potential of itself. In the case of Genetically Encoded Voltage Indicators

(GEVIs), the voltage potential of the neuron will be indicated by a change in fluorescence

intensity. With effectors like opsins, the actual stimulation of light can cause a current

response within the neuron [39, 40]. Furthermore, the method of optogenetics allow sci-

entists to study the brain non-invasively and without any direct probes which is one of the

drawbacks of patch clamping. With the development of optogenetics in the 2000s, aca-
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demic labs around the world have focused on creating “better” protein mutations so that

the opsin and GEVI response is faster, brighter, and less damaging to the neuron for longer

recording opportunities [41, 42, 43, 44].

However, there are two fundamental issues with an all-optical study of the brain, (1)

the temporal fidelity is not as precise as compared to whole-cell patch clamping, and (2)

the difficulty in re-engineering and developing better GEVIs and opsins. Due to the vast

number of mutant libraries for different protein mutations, there is still a requirement to

use patch clamping as ground truth data to validate that the protein mutation and its mech-

anisms respond as they should to an action potential. In this manner, the use of whole-cell

patch clamping is still required to further develop better opsins, and thus there is a need for

automation and the use of the “patcherBot” to mitigate the time-consuming experiments

of opsin validation. This thesis integrates light stimulation and voltage imaging with the

patcherBot to optimize the automation for discovery experiments as it pertains to optoge-

netics.

1.1.5 Machine learning in patch clamping

One of the most crucial initial steps in the patch clamping process is identifying a healthy

cell. The edges of a healthy neuron under Differential Interference Contrast (DIC) are

often unclear and vary widely in shape and size. Moreover, the milieu of brain tissue

not only consists of neurons, but also cerebrospinal fluid, blood vessels, and glia, among

other extracellular content which induce significant light scattering under DIC, an optical

technique widely used for observing unstained biological samples. While fluorescence

microscopy may be used for identifying somas in acute slice patch clamp experiments, it is

not always practical since it requires the use of dyes or genetically engineered production

of fluorophores. Rather, it is often desirable to image label-free, yet optically transparent

samples which requires the use of DIC.

Since identification of neurons is such a critical task, often requiring significant experi-
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ence to identify healthy cells, automation of the cell identification and selection process is

a difficult, necessary step towards completing full automation of patch clamp as well as in

assisting novices how to identify cells. Research groups enabling the automation of patch

clamp have alluded to the potential benefits of automating this task, though the problem is

not yet fully resolved. Koos et al. have recently shown a CNN that identifies somas under

DIC, though their network required substantial time and over 31,000 annotated neurons for

training [45]. This thesis aims to achieve similar accuracy on a smaller, faster CNN that

can quickly nominate cells for patch clamp experiments.

1.1.6 Local synaptic connectivity and circuit mapping

Lastly, as previously mentioned in the introduction, the notable attempt to map and catalog

the mammalian neocortex by the Allen Institute for Brain Science was recently published

[46]. This ambitious, multi-year project set out to profile thousands of neurons using patch

clamping. Even more heroically, they managed to do this feat with brute force of manual

patch clamping. Not only did this take years of effort by dozens of scientists, but it is not

clear if these efforts can be replicated in other brain regions or by any other lab or institution

in the future. But such an effort is required because cell types transmit information in

a highly stochastic manner and dependently on past activity. The dynamic properties in

connectivity between cell types suggest major implications in cortical function, and the

need for empirical neuroscience data for computational and modeling studies is highly

necessary. Thus, it is important to classify neurons to understand cortical circuit function

as well as classifying probability and the dynamic synaptic relationship between pre- and

postsynaptic cell types.

Other labs dedicated to the reconstruction of the local circuitry and synaptic connectiv-

ity within brain regions [17, 20, 47, 48] have also devoted years of heavy efforts, and the

ability to add automation to the issue can greatly enhance the efficiency and effectiveness

of such studies. Even more so, automation would add a level of efficiency for other labs
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who also studied local circuitry on a more limited scale such as the anteroventral cochlear

nucleus [49]. While an atlas and catalog of the local circuitry and synaptic connections in a

brain region can enhance our ability to understand the brain, there is additional utility with

automation of multiple manipulators for simultaneous multi-pipette patch clamping.

Indeed, neurons such as parvalbumin inhibitory interneurons (Parvalbumin Inhibitory

Interneurons (PV-int)) are highly vulnerable to stressors and have been implicated in many

psychiatric diseases like autism and Alzheimer’s disease (AD) [50]. Alzheimer’s disease

is associated with changes in fast-spiking interneurons. Transgenic mice with AD-like

pathology were found to have reduced gamma power that, in one model, precedes cog-

nitive impairment and amyloid plaque formation [51]. In another study, a voltage-gated

sodium channel (Nav1.1) that is largely found on axons of PV-int was decreased in a mouse

model with amyloid pathology, and in AD patients [52]. Restoration of the levels of this

voltage-gated sodium channel increased gamma oscillations, while memory deficits and

premature deaths decreased [52]. Thus, the final aim was to create an efficient method to

probe local synaptic connections between neurons. To do this, I developed the first ever

forward-thinking multipatching robot demonstrating automatic, sequential recordings in a

brain slice using a coordinated route plan. This method, named ”patch-walking”, uses a

route-planning algorithm to optimize for efficient, high throughput synaptic connectivity

studies whether it is used for profiling the local circuitry of a region of the mouse brain or

for studying the effects of PV-int stressors that may lead to pathologies towards Alzheimer’s

disease.

To enable high throughput patch clamping for pharmacological, optogenetic, and chemi-

genetic discoveries, I aim to link the electrophysiology of cells to the application of various

effectors. Due to a vast number of mutant libraries for genetically encoded voltage in-

dicators/effectors and numerous pharmacological compounds, a rigorous, robust census

of these libraries must necessarily be automated. I have developed and optimized an auto-

mated tool that enables recording of whole-cell intracellular recordings in combination with
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drug delivery, light stimulation, or voltage imaging. With these technologies combined, this

thesis enabled the first robot that can automatically search for connected neurons in brain

tissue and also outperforms manual patch clamping-based screening assays to significantly

advance the field of neuroscience and reveal new insights into brain function
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CHAPTER 2

INTEGRATE AUTOMATED PATCH CLAMPING TO IMPROVE

REPRODUCIBILITY AND THROUGHPUT FOR TRADITIONAL

PHARMACOLOGY ASSAYS

2.1 Summary

We report an automated, high-precision patch clamp system which substantially improves

the throughput of these time-consuming pharmacological experiments. The patcherBotPharma

enables recording from cells expressing receptors of interest and manipulation of them to

enable millisecond solution exchange to activate ligand-gated ionotropic receptors (work-

flow seen in Figure 2.1). The solution-handling control allows for autonomous pharma-

cological concentration-response experimentation on adherent cells, lifted cells, or excised

outside-out patches. The system can perform typical ligand-gated ionotropic receptor ex-

perimentation protocols autonomously, possessing a high success rate in completing exper-

iments, and up to a 10-fold reduction in research effort over the duration of the experiment.

Using it, we could rapidly replicate previous datasets, reducing the time it took to produce

an 8-point concentration response curve of the effect of propofol on Gamma-Aminobutyric

acid Receptor Type A (GABAAR) deactivation from likely weeks of recording to 13 hours

of recording (Figure 2.2). On average, the rate of data collection of the patcherBotPharma was

a data point every 2.1 minutes that the operator spent interacting with the patcherBotPharma.

The patcherBotPharma provides the ability to conduct complex and comprehensive experi-

mentation that yields datasets not normally within reach of conventional systems that rely

on constant human control. This technical advance can contribute to accelerating the ex-

amination of the complex function of ion channels and the pharmacological agents that act

on them.
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2.2 Introduction

Patch-clamp electrophysiology is an incredibly important technique that has enabled many

discoveries in pharmacology, physiology, and neuroscience [1, 53]. Patch-clamp record-

ing has the ability to accurately measure the time-course of postsynaptic or post-junctional

currents and can fully resolve ion flux and the rapid transitions of individual ionotropic

receptors [1, 54, 55, 56]. However, extensive effort and time are required to perform this

high-resolution technique. Many alternative methods and machines have been developed

that attempt to accelerate the collection of data that approximates what patch-clamp electro-

physiology can achieve, such as activity-sensitive fluorometric probes and high-throughput

machines that patch dissociated cells on planar patch-clamp “chips” [57, 33, 58, 34, 35,

36]. However, these methods sacrifice the high precision of patch-clamp electrophysiology

in order to achieve higher throughput. For instance, fluorometric probes must be tuned to a

specific application, and fully resolving the kinetics or full activity of ionotropic receptors

is typically not possible. Imaging experiments also cannot control for confounding volt-

age fluctuation associated with the measured response. Additionally, for high-throughput

patch-clamp systems, performance is limited by their solution handling capabilities, and

cost of both equipment and supplies are prohibitive for many studies. Most of these meth-

ods are also incapable of measuring cells that are adherent or embedded in tissue [28, 29,

59, 34].

Recently, our group has worked on equipping a traditional intracellular electrophysi-

ology rig with the capability to operate autonomously [60, 31]. Robotic vision, pipette

pressure control, and electrode cleaning enable the resulting “patcherBot” to execute the

basic steps required to perform patch-clamp electrophysiology without human intervention.

Utilizing these automated methods allow for the acceleration of electrophysiology exper-

imentation by reducing the process times of many steps as well as drastically decreasing

the amount of required operator-rig interfacing time. The patcherBot is capable of patching
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over 30 cells sequentially, can run unattended for over 4 hours, and operates at about a 70%

success rate (reaching the whole-cell patch-clamp configuration per patching attempt) [31].

These advances enable the patcherBot to record spontaneous activity or voltage-dependent

biological phenomena, and they can be multiplexed within a single preparation to record

from multiple cells simultaneously. Thus, the patcherBot is highly proficient at addressing

questions such as connectomics or intrinsic properties of neurons. Despite its many capa-

bilities, this technology cannot perform many assays on ligand-gated ionotropic receptors

or pharmacological studies.

Here, we present an implementation of the patcherBot that enables automated intracel-

lular pharmacological electrophysiology. The “patcherBotPharma” can perform pharmaco-

logical concentration-response experiments and can record ligand-gated ionotropic recep-

tor response to fast agonist exposure (ms exchange time) with automated control of the

microscope, bath solution, a solution manifold, and a piezoelectric translator. We observe

a high-throughput rate of the patcherBotPharma unattended, with further improvement using

minimal operator assistance. We show the capabilities of the patcherBotPharma by repli-

cating a conventional dataset substantially faster — with considerably less human effort —

than we had done previously. The increased efficiency enabled by this patch-clamp electro-

physiology system creates the potential to address scientific questions that were previously

considered impractical because of large, time consuming requirements needed to complete

data acquisition using conventional approaches.

2.3 PatcherBotPharma Hardware and Software

The patcherBotPharma is built on a standard inverted microscope (Axiovert 200, Ziess) to al-

low for clearance of the recording electrode and solution handling manifolds. Standard,

three-axis micromanipulators were used to translate the recording electrode (PatchStar,

Scientifica) and the microscope (Motorized XY Stage [UMS] with Z-focus module, Scien-

tifica). A high sensitivity camera (Retiga Electro, QImaging) is used for computer vision.
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Figure 2.1: patcherBot workflow showcasing a discovery experiment for pharmacology.
The difference here versus the original patcherBot is the addition of drug application during
ephys recordings.

Electrode pressure was controlled using a custom control box that regulates house-air line

to deliver -700 to +1000 mbar using an inline venturi tube (SMC), solenoid valve (Parker

Hannifin), and a digital air regulator (ProportionAir) controlled by an Arduino Uno for

rapid pressure switching [26, 31]. A three-barreled, square cross-section solution manifold

(3SG700-5, Warner Instruments) attached to a piezoelectric translator (Burleigh Instru-

ments) was used for cell perfusion similar to many that have been previously published [61,

62]. Barrels of the solution manifold were connected to 8-valve solution changers (Hamil-

ton Modular Valve Positioner). Custom LabVIEW code (National Instruments) integrating

manipulators (electrode and microscope), camera view of the microscope stage, pressure

control box, piezoelectric translator, and solution valves was implemented to control the

rig and enable automated experimentation. Communication between the computer and the

amplifier, piezoelectric translator and solution changers was achieved using a Data Acqui-

sition System (DAQ) (BNC-2110, National Instruments) with several analog and digital

interfaces. Representative approach is seen in Figure 2.2.

2.3.1 Transiently Expressing HEK cells

Human Embryonic Kidney cells (HEK-293) (CRL 1573, ATCC; hereafter HEK cells) and

a stable GABAAR-expressing cell line were cultured in DMEM (Cat 10566016, Ther-

moFisher Scientific) supplemented with 10% fetal bovine serum (FBS), 10 U/ml peni-
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Figure 2.2: Cartoon of the patcherBotPharma, assembled from an inverted microscope, high
sensitivity camera, custom pressure control box, quasi-4 axis electrode manipulator, a mo-
torized microscope manipulator, two solution valves, and a solution exchange manifold.

cillin, and 10 µg/ml streptomycin and maintained at 5% CO2 in a 37°C incubator. For

use on the electrophysiology rig, heterologous cells were plated on poly-D-Lysine (PDL)

coated glass coverslips (0.1-0.5 mg/mL, Warner Instruments). Recombinant N-methyl-D-

aspartate (NMDA) receptors were transiently expressed from complementary DNA (cDNA)

encoding rat GluN1-1a (hereafter GluN1, U08261), and GluN2A (D13211). Calcium phos-

phate was used to transfect HEK cells in a 24-well plate with 500 ng of DNA at a ratio of

1:1:5 (GluN1:GluN2A:GFP). Four hours after transfection, N-methyl-D-aspartate Recep-

tor (NMDAAR) antagonists D,L-2amino-5-phosphonovalerate (200 µM, DL-APV) and 7-

chlorokynurenic acid (200 µM) were added to the culture medium to decrease the cytotoxic

effect of NMDAAR expression.

2.3.2 Stably Expressing HEK cells

cDNAs for mouse Gabra1, Gabrb2, and the long form of Gabrg2 were subcloned into

the pAC156 plasmid, a generous gift from Albert Cheng. The cDNAs were driven by

an EF1alpha promoter. A PGK promoter-driven puromycin resistance cassette was also
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present in pAC156; both cassettes were flanked by piggybac transposon arms. All three

plasmids were co-transfected with the mPB piggybac transposase into HEK 293 cells, se-

lected by puromycin, and sorted into single cells. Clones were assayed for Gabra1, Gabrb2,

and Gabrg2 expression by immunofluorescence, and one clone was expanded for further

study and use in this manuscript. Trypsin was used to dissociate the cells and plated on

the same coverslips, as mentioned above, 24-72 hours before experimentation (shorter time

and less PDL for lifted cell, and the inverse for excised patches).

2.3.3 Whole-cell voltage-clamp recordings

Whole-cell voltage-clamp recordings were performed with thin-walled borosilicate glass

electrodes (3-6 MΩ, TW150F-4, World Precision Instruments) filled with solution con-

taining (in mM) 110 Cs-gluconate, 30 CsCl, 5 HEPES, 4 NaCl, 0.5 CaCl2, 2 MgCl2,

5 BAPTA, 2 NaATP, 0.3 NaGTP (pH 7.35). The extracellular recording solution con-

tained (in mM) 150 NaCl, 10 HEPES, 3 KCl, 0.5 CaCl2, 1 MgCl2, and 0.01 EDTA (pH

7.4). Whole cell recording from primary cortical neurons (examples showing alternative

experiment paradigm in the supplemental) were obtained utilizing an internal solution, con-

taining (in mM) 115 K-gluconate, 20 KCl, 10 HEPES, 2 Mg2ATP, 0.3 NaGTP, and 10

Na2Phosphocreatine (pH 7.35), and external solution stated above but with 1mM CaCl2.

The electrode cleaning solution (2% Tergazyme in water) was made fresh daily. Cleaned

electrodes were washed in appropriate external solution. All solutions were filtered (0.45

µm or 0.22 µm). Responses were recorded using a Multiclamp 700B (Molecular Devices),

filtered at 10 kHz (-3 dB), and digitized at 20 kHz.

2.3.4 Analysis and Statistics

Whole-cell rapid solution exchange experiments were analyzed using custom algorithms

(Matlab, Mathworks). The desensitization and deactivation time courses were fitted by

exponential functions based on receptor type. For NMDAAR desensitization and GABAAR
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deactivation, they were fit by one exponential function,

I = A ∗ e
−time

τ (2.1)

where I was the current response, A was the amplitude of the response, time is the

duration after the peak response or removal of agonist, τ is the time constant, and C is an

offset constant. NMDAAR deactivation and GABAAR desensitization was fit with a dual

exponential function,

I = Af ∗ e
−time
τf + As ∗ e

−time
τs + C (2.2)

the two exponentials are designated as fast (Af, τf ) and slow (As, τs). For dual expo-

nential fits, a weighed tau (τw) was calculated,

τw =
Af ∗ τf + As ∗ τs

Af + As

(2.3)

The Fisher’s exact test, two tailed, was used where noted. Mean ± SEM (standard error

of the mean) is used unless otherwise noted.

For efficient traditional pharmacological experimentation, one must ensure the viabil-

ity of the available cell pool during sequential experimentation. Especially for ligand-gated

ionotropic receptors, this is achieved by lifting cells or pulling patches from the coverslip

and performing solution application far from the cells remaining on the coverslip (Fig-

ure 2.3B). This procedure can be more straightforward than translating the manifold to the

cell locations. We first set out to ensure that this could be done reproducibly by the robotic

system, since achieving accurate placement of all components is essential for efficient data

collection with minimal operator effort. We first verified that the patcherBotPharma could tra-

verse the recording electrode distances on the millimeter scale while ensuring micrometer

scale precision at the interface of a multibarrel flow pipe, given that piezoelectric translators

typically have a maximum range from 100-300 µm. This is especially important since in

19



one complete cycle of the patcherBotPharma operation (patching, experiment manipulation,

and electrode cleaning) the electrode will translate roughly 150 mm.

The patcherBotPharma needs to achieve this high level of accuracy and precision at the

solution manifold without necessitating manual, time-intensive error correction. Typically,

the placement of the electrode at the solution interface is established visually at a predesig-

nated location (beginning of the recording session) then test pulses are conducted to ensure

proper placement taking at least 30 second for a highly skilled operator. To test the ability

to return to the critical location, we translated the electrode through the various positions

required to patch sequentially (4x). After each cycle, the solution exchange around an

open-tip electrode was measured by triggering a piezoelectric translation of the solution

manifold (exchanging extracellular buffer and a partial salt solution containing 50% extra-

cellular buffer and 50% H2O). We found that the electrode could be repeatability positioned

while retaining the fast solution exchange time, and without placement errors that can lead

to recording artifacts (i.e., straying into the adjacent lane before the jump, Figure 2.3C).

Lifting cells in the whole-cell configuration and pulling outside-out patches are two

of the most common methods of studying ligand-gated ionotropic receptors using rapid

solution exchange manifolds. For lifting cells in the whole-cell conformation, we imple-

mented a segmented (100 step) spiral translation method while applying a light suction on

the pipette (-40 mbar, Figure 2.3D,E). In applying this method, we were able to reliably

lift cells while retaining the high-resistance seal that was obtained while breaking through

(Figure 2.3F). For pulling outside-out patches, we implemented a segmented (100 step) arc

translation method while the pipette was at atmospheric pressure (Fig. 2G,H). In applying

this method, we were able to repeatedly pull outside-out patches, achieving the character-

istic low capacitance and high resistance of this patch-clamp conformation (Figure 2.3I).

With these new functionalities, this system proved capable of performing rapid solu-

tion exchange experiments as well as executing precise solution application. To demon-

strate these capabilities, we recorded from two synaptic ligand-gated ionotropic recep-
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tors, GABAAR and NMDAARs, using the patcherBotPharma (Figure 2.4). As expected,

the patcherBotPharma was capable of recording NMDAAR responses from transiently trans-

fected HEK cells that were lifted off the bottom as well as from outside-out patches excised

from HEK cells (Figure 2.4A). Additionally, the patcherBotPharma was capable of recording

GABAAR responses from stably expressing cells, including both long agonist applications

as well as brief agonist applications (5 ms, Figure 2.4B). In addition to this experimental

protocol, the patcherBotPharma is programmed to conduct many other commonly used solu-

tion exchange protocols (Supplemental Fig. 1) as well as voltage-clamp and current-clamp

protocols. These can be employed to measure neuronal activity or study specific voltage-

gated channels expressed in heterologous cells. The patcherBotPharma can implement these

experimental protocols on adherent cells, lifted cells or patches pulled from cells, paired

with solution control to measure channel responses in different conditions (Figure 2.7).

We subsequently performed a series of pharmacology experiments on GABAAR and

NMDAARs where we recorded rapid agonist application to excised outside-out patches to

assess patcherBotPharma performance on the minimum processes required in an experiment

(Table 2.1). Assessment of the overall performance of the patcherBotPharma for both gluta-

mate and GABA receptors revealed that a giga-ohm resistance patch (gigaseal patch) was

obtained 81.2% of the time (108 of 133 attempts). After a gigaseal was achieved, suc-

cessful break-in occurred 96.3% of the time to establish the whole-cell conformation (104

of 108 gigaseals). After whole-cell configuration stabilization, the success rate of excis-

ing an outside-out patch was 76.0% (79 of 104 whole-cell conformations). The successful

completion of an experiment based on every outside-out patch pulled was 74.7% (59 of

79 outside-out patches). Subsequent failure to complete an experiment after obtaining an

outside-out patch was due either to the lack of detectable receptor response upon agonist

application or patch integrity breakdown after initiating the experimental recordings. Taken

together the overall success of the patcherBotPharma was 44.4% (59 of 133 attempts). In ex-

amining the nature of failed experiments, we found that the yield of the system is largely
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based on two main factors, electrode placement and biological factors.

One major contributing biological factor to experiment failure was the efficiency in

the transient cDNA transfection process used to express the NMDAARs. Overall, there

was a higher success rate in achieving a high-quality recording from the stably express-

ing GABAAR cells (31 successes out of 51 total attempts) than the transiently transfected

NMDAAR cells (28 successes out of 82 total attempts, Fisher’s exact test, p = 0.0039).

Despite expression of GFP, which was coexpressed with NMDAAR subunits, 14 of the 42

pulled patches did not have a current response of a sufficient amplitude. By contrast, the

GABAAR cell line had a trend of higher reliability: only 5 of the 31 outside-out patches

failed to have detectable current. This suggests that enhanced yield could result from im-

proved molecular biology methods. Outside of those biological inefficiencies, monitoring

the operation of the patcherBotPharma suggests that the failures at the gigaseal formation step

and the outside-out patch-pulling step are due to slight errors (1-3 µm) in optimally placing

the electrode. In this dataset, we had performed a subset of experiments where an exper-

imenter manually intervened by controlling the final placement of the electrode once the

patcherBotPharma had positioned the electrode 100 µm above the next selected cell. In these

operator-assisted experiments, we observed that the gigaseal yield was higher with 97.2%

and the patch-pulling yield was 88.6%. Specifically, in obtaining gigaseals, the operator-

assisted trials resulted in 35 successes from 36 attempts compared to 9 successes from 15

attempts (Fisher’s exact test, p = 0.0016). Additionally, in excising outside-out patches, the

operator-assisted trials resulted in 31 successes from 35 attempts compared to 6 successes

from 9 attempts (Fisher’s exact test, p = 0.1383). The overall yield (successful experiment

compared to attempt) of these operator-assisted runs was 69.4% (25 good experiments of

36 attempts), as compared to the 40% success rate of the other experiments (6 good experi-

ments of 15 attempts, Fisher’s exact test, p = 0.0645). Fully automated electrode placement

implemented in the patcherBotPharma relies on machine vision using camera pixel intensity

cross-correlation methods to align a previously stored image of the cell and electrode to
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make corrections at the beginning of each attempt. These methods work well in placing the

electrode somewhere on a cell ( 10 µm precision) without operator intervention but lack

the accuracy to place it optimally (¡1 µm), which appears to have a large impact on overall

success. In addition to the losses in efficiency, the machine vision processes are slow due

to the necessity to move the electrode or microscope to check for positioning errors. The

process time during fully automated patcherBotPharma operation takes on average 267 ± 35

s (mean ± Standard Deviation, SD) to correct the manipulators, land the electrode on the

cell and break-in to the whole-cell conformation. This is compared to 74 ± 10 s (mean ±

SD) for the operator-assisted patcherBotPharma, where robotic translations move the stage

to the next cell and places the electrode just above the cell (100 µm) before the operator

places the electrode on the cell and, in this case also, forms a gigaseal followed by the au-

tomated break-in process. Thus, the patcherBotPharma can operate fully autonomously, but

the speed and performance can be improved by operator intervention during key steps with

the current techniques of position error correction.

Operating in this manner, with minor manual interaction, the patcherBotPharma can col-

lect experiment electrophysiology recordings proficiently, which is demonstrated by a rep-

resentative run of the patcherBotPharma from the results mentioned previously (Figure 2.5).

In this experimental run, the patcherBotPharma was programmed to collect four-phase record-

ings. During each phase, five technical replicate sweeps were collected, a 10 sec sweep

with agonist applied for 0.5 sec. Following each set of recordings, the patch was blown off

with high pressure and the open-tip exchange time was determined to validate the electrode

positioning. On average, the recording time and position validation totaled 11.2 min. If the

patcherBotPharma detects inadequate patch formation, after the outside-out patch procedure,

it terminates the recording and moves on to the next cell, spending only 1.4 min in doing

so. Over this 3.8 hour recording session, highlighted in Figure 2.5, 15 cells were attempted

to be patched, yielding 12 successful recording sets. During this time, the operator only

interacted with the patcherBotPharma for 15.5 min during recording (7.1% of the experimen-
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tal run time) after the 10.3 min of calibration and cell selection. The patcherBotPharma was

recording data for 2.6 hours, which amounts to 72.0% of the operation time. The GABAAR

responses that were collected were of high quality and similar to those previously reported

(Figure 2.5B, Table 2.3). Additionally, the placement of the electrode resulted in consistent

solution exchange times after each patch recording (Figure 2.5C).

Next, we performed a case study (Figure 2.6) where we sought to measure the main

actions of a widely used anesthetic, propofol (PRO), to highlight the operational proce-

dure and capability of the patcherBotPharma in performing an extended, tedious patch-clamp

electrophysiology experiment. Propofol’s main clinical actions are produced by prolong-

ing the deactivation of GABAAR and have been well characterized [63, 64]. We ran

the patcherBotPharma with operator assistance for electrode placement (Figure 2.6A,B) fol-

lowed by manual patch formation, to optimize the time of biological data collection by the

patcherBotPharma. We set out to collect an 8-point concentration response curve of propo-

fol’s effect on GABAAR deactivation, and we split it into two sets and included a propofol-

free control before and after drug application (Figure 2.6C). In four, half-day recording

sessions (2 per each concentration set) totaling 12.95 hours of patcherBotPharma operation,

we attempted 42 recordings, obtained 39 gigaseal patches, achieved 28 whole cell con-

formations, pulled 24 successful outside-out patches, and completed 18 experiments (in-

cluding 6 incomplete) that yielded 113 data points (Figure 2.6D-E, Table 2.4, Table 2.5).

After eliminating the recordings with too large a leak current, too small a response ampli-

tude, or recording artifacts, we were left with 71 data points that were used to calculate

the concentration-response relationship of propofol’s ability to prolong the deactivation of

GABAARs (EC50 = 11.8 ± 4.6 µM, Figure 2.6D-E).

Of the 12.95 hours of recording, the operator interacted with the patcherBotPharma for

2.49 hours and the patcherBotPharma collected experimental recordings for 9.07 hours, with

an additional 1.39 hours of other automated processing (Table 2.4). The 2.49 hours of op-

erator interaction includes cell selection, solution maintenance, electrode placement on the
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cell, and gigaseal formation. In each iteration of the patcherBotPharma process, it spent 1.99

minutes cleaning the electrode and the operator spent 2-3 minutes placing the electrode

on the cell and establishing the whole-cell conformation. If everything was successful,

the patcherBotPharma would then proceed to collect the experimental data — in total a 24.6

minute process. If there was an issue with the stability of the patch during the process of

pulling the outside-out patch (1.73 min process), the patcherBotPharma would clean the elec-

trode and be ready for the next attempt in less than 2 minutes. Although the experiment

yield was not overly high (24/42 attempts were successful) this did not greatly hinder the

performance of the patcherBotPharma (Table 2.6). If every patch attempt was successful, the

theoretical maximum number of experiments the patcherBotPharma could have performed in

12.95 hours was 25.8, which is only modestly higher than the 18 that we were successfully

performed (70% full experiments performed divided by the maximum). Moreover, the

rate of data collection, in terms of operator effort, was 2.1 minutes per data point. Should

patching efficiency be improved further, the theoretical minimum of operator effort can be

reduced to 0.97 minutes per data point.

2.4 Discussion

Patch-clamp electrophysiology research is a powerful technique, yet even for skilled prac-

titioners, the complexity and effort required for comprehensive pharmacology experiments

(pharmacological screening or evaluation of full concentration-response relationships) can

be impractical. Here, we have demonstrated the capabilities of the patcherBotPharma for

ligand-gated ionotropic receptor pharmacological screening, which makes patch-clamp

electrophysiology experimentation rapid, less skill intensive, and more reliable. The au-

tomation of the patcherBotPharma, namely precise and accurate electrode translations, solu-

tion handling, electrode cleaning, and rapid solution exchange greatly expands the reper-

toire of experiments that the patcherBot can perform. This allows one to conduct nearly

any pharmacological experiment typically performed on ligand-gated or voltage-gated ion
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channels using the patcherBotPharma (e.g. Figure 2.7 and Figure 2.8). Additionally, the

patcherBotPharma has the flexibility to be retooled as needed based off a traditional patch-

clamp rig and can run autonomously or with minimal operator intervention to suit the ex-

perimental situation. Thus, the patcherBotPharma could be set up to patch adherent cells and

applied compounds via the bath input, if desired, and the full automated capabilities of the

system will be retained if all test compounds can be fully washed out.

The patcherBotPharma has very high yield (80-100%) of obtaining giga-ohm resistance

patches and of breaking-in to achieve the whole-cell patch conformation. The methods

we have employed to lift isolated patch-clamped cells and to pull outside-out patches are

highly reliable (70-90% yield). These capabilities allow the patcherBotPharma to spend more

time performing the intended electrophysiology experiment and less time in the process

of manually guiding the position of the patch electrode throughout the course of the full

experiment. With this improved system, the primary determinants for whether a particular

experimental attempt concludes in a successful recording, relies more on biological factors

than robotic or operator factors. In our experiments with heterologous expression systems

(namely transfected HEK cells), the yield in high quality recordings, with high receptor

expression, of the patcherBotPharma reaches 60-70% of the cells attempted. With this high

efficiency of data collection, we could rapidly replicate previous datasets by reducing the

time it takes to produce an 8-point concentration response curve of the effects of propofol

on GABAAR deactivation from weeks/months of recording down to 13 hours of recording.

This system retains the full capabilities of a traditional electrophysiology rigs. We

observed solution exchange times, with our larger three-barreled manifold, in the low mil-

lisecond range (∼1-2 ms), which could be reduced further (<1 ms) using different so-

lution manifolds ([61, 62]). This allows for accurate experimentation and can be used

to study rapidly desensitizing receptors, which cannot be measured on commercially avail-

able multi-well high-throughput patch-clamp instrumentation. The patcherBotPharma system

largely comprises typical components of a conventional electrophysiology rig (Table 2.2),
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and thus does not require a substantial or prohibitive cost to upgrade. Running costs are

low, comparable to the cost of operating a traditional patch-clamp rig, and primarily in-

clude the cost of the preparation (cell culture costs) and compounds being evaluated. There

are no additional changes in running costs based on each data point collected, except for

reduced glass consumption and perhaps reduced preparation costs that come with more ef-

ficient recording. However, as the patcherBotPharma can be in operation for extended periods

of time and can execute experiments at a high rate, the running costs based on each day of

operation may, in fact, be higher due to the increased bath solution usage and increased use

of pharmacological compounds.

There are several improvements to the patcherBotPharma that could further increase its

capabilities and productivity. Enhanced machine vision correction methods could allow

for more precise placement of the electrode with less computation time thus increasing the

unattended success rate and reducing human effort. Algorithms for cell detection could be

employed to make cell selection agnostic, with further reduction in human effort and bias

[65]. Repeatable collection of data will aid in meta-analysis of experiments, which could

identify unrecognized factors that influence experimental results or experimental variabil-

ity.

The patcherBotPharma facilitates pharmacological experimentation on ligand gated chan-

nels through increased productivity and the ability to address labor-intensive questions (col-

lecting multiple concentration data points or testing more constructs). This allows more

complex experimental protocols that include increased number of replicates and more con-

trols. Many neuroscience studies have been cited as having low power in their experimen-

tal design [66], which could be rectified by utilizing the patcherBotPharma. Additionally,

the patcherBotPharma reduces the chance of human bias when collecting data, as the exper-

iment protocols are explicitly defined prior to experiment execution. Moreover, methods

to introduce blinding in the experimental design could be employed along with automated

analysis to allow one to easily jump to the final analyzed data point after conducting the
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experiment. The data collected by the patcherBotPharma might be more reproducible due

to enhanced transparency, as the full patcherBotPharma experiment data log could be doc-

umented along with the results [67]. With the reduction in human effort that comes with

operating the patcherBotPharma, it becomes feasible that a single person could operate multi-

ple patcherBotPharma at once for increased data collection. In summary, the patcherBotPharma

enhances the capabilities of a researcher utilizing patch-clamp approaches by decreasing

operator interaction time, reducing human bias, increasing experiment yield, allowing more

complicated experimental design, and enabling experiments that require high volumes of

recordings.

2.5 Additional Pharmacology Experimentation

Table 2.1: GS, gigaseal. WC, whole cell. O-O, outside-out. Success percentage is cal-
culated for each step (i.e. WC success is calculated based on the number of GS counts),
except for the overall exp. success. An attempt is deemed a successful experiment if the
full experiment set was collected, in a few instances the patch was pulled, deemed to be
successful but failed during the experiment data collection.
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Figure 2.3: Repeatability of the physical manipulations require for fast-solution exchange
electrophysiological experiments. (A) Image of the recording chamber. (B) Cartoon il-
lustrating the large distances (e.g. X-Y mm scale) the electrode must translate during
experimentation. (C) Open-tip solution exchange times, using piezo-electric translator,
across many repeated experimental cycles (cell locations, solution manifold interface,
cleaning/wash bath). (D-F) Cell lifting procedure. (D) Image of an isolated cell in the
whole-cell conformation before lifting (isolated cell are more reliably lifted than those with
cellular processes to adjacent cells). (E) Spiral path (100 discrete segments) employed to
lift isolated cells. (F) Resulting resistance plot showing a high resistance seal is robustly
maintained during the lifting process. (G-I) Patch pulling procedure. (G) Image of a cell in
the whole-cell conformation before pulling an Outside-out (O-O) patch. (H) Arc path (100
discrete segments) employed to pull outside-out patches. (I) Resulting capacitance and
resistance plots showing successful high-resistance, low-capacitance outside-out patches.
We speculate the low resistance prior to pulling the outside-out patches is due to electrical
connections due to gap-junctions between multiple cultured cells in physical contact with
one another.
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Figure 2.4: Exemplary fast-solution exchange electrophysiological experimental results.
(A) NMDAAR responses from transiently transfected HEK cells stimulated by 100 M glu-
tamate and 30 M glycine. Recordings are from a lifted whole cell (left) and an outside-out
patch using a 4 M electrode (right), at -60 mV in 0 mM Mg2+. (B) GABAAR responses
from stably transfected HEK cells (122L) stimulated by 1 mM Gamma-Aminobutyric acid
(GABA). Recordings are from a lifted whole cell (left, 1 s application) and an outside-out
patch (right, 5 ms application)
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Figure 2.5: (A) Timeline of experimental progress. The time periods of operator interaction
with the patcherBotPharma and recording duration are highlighted, along with recording
outcome. (B) GABAAR responses (1 mM GABA, 1 s application) from all successful
outside-out patches pulled. Scale bars indicate 20 pA and 0.5 s. (C) Post-experiment open-
tip position validation utilizing a 50% H2O/50% wash solution. Scale bars indicate 200 pA
and 20 ms. The average (± SD [Range]) 20-80 rise and fall times for piezoelectric jumps
were 3.06 ± 0.78 [1.30 4.11] and 3.56 ± 0.32 [2.27 6.55].
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Figure 2.6: GABAR propofol deactivation time-constant concentration response case study;
the patcherBotPharma has the capability to collect pharmacological data at an accelerated
rate. (A) A flowchart illustrating the patcherBotPharma operation, timing, and success rate of
individual steps. The manual (white boxes) and automated (grey boxes) steps are indicated.
(B) A more detailed depiction of the manual steps is shown. (C) A more detailed look at
the experimental protocol step of the patcherBotPharma process. In this case, there were
6 sets of solutions that would be used during each experiment (2 control and 4 propofol
solution sets, detailed on the left). Each phase of each experiment would start with the
valves changing to the next set to be tested, with a wait step to allow for the solutions to be
primed, followed by the collection of 10 replicates of the intended jump protocol (right).
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Figure 2.7: Solution exchange protocols programmed into the patcherBotPharma can utilize
either movement of the piezo-mounted manifold, or movement of the manipulator holding
the pipette. (A-C) A piezoelectric translator is controlled by a filtered voltage pulse signal,
in either individual pulses (A), paired pulses with an optional increasing delay (B), or a train
of applications with variable pulse width and period (C). (D) A slow solution exchange
experiment can be performed where the solution valve is switched at a specific time during
the experiment to record the slow transition of the application of a second solution. (E) The
smooth motion from the electrode manipulator can be used to perform a similar solution
application to (A), but with a broader range of motion allowing multiple barrels to be used.
(F) Any number of manipulator transitions can be combined to produce complex solution
applications.
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Figure 2.8: (A) Typical bright-field image of DIV14 cortical neuron during a recording.
(B) An exemplary current-clamp gap-free recording (Iinjection = 0 pA), showing sponta-
neous network activity, bursting, and the resting membrane potential (-74 mV). (C-D) A
current-pulse protocol and a current-ramp protocol, illustrating the amount of injected cur-
rent is required to induce an action potential. (E) An exemplary voltage-clamp gap-free
recording (Vholding = -60 mV), showing spontaneous network activity and even puta-
tive spontaneous events (pink staffs). (F) Two-part voltage-pulse protocols can elucidate
voltage-gated channel responses. (G) Voltage-ramp and -step protocols can also be applied
to measure membrane properties.
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Table 2.2: The typical components required for a patch-clamp rig that can perform rapid
solution exchange experiments are shown in the traditional electrophysiology rig column
and compared to the patcherBotPharma. For the traditional electrophysiology rig other com-
ponents are available and could result in a lower total cost. Many of the listed prices are
quoted from www.autom8.com, direct prices from the manufacturers may be less. † The
patcherBotPharma does not require any specific types of this component. ‡ Suggested Mini-
mum Requirements: 32 GB RAM, i7-8700K CPU @3.70GHz, Additional GPU
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Table 2.3: Summary of activation and deactivation parameters of GABAAR and NMDARs
from Figure 2.4 and Figure 2.5.

Table 2.4: † The non-recording time is the time the robot is not performing the data collec-
tion protocol. ‡ This rate represents the total time the operator spent interacting with the
patcherBotPharma during the entire experiment performance (cell selection, solution mainte-
nance, electrode placement on the cell, and gigaseal formation). The theoretical maximal
efficiency of data collection per the operator’s effort would be 0.97 mins of the operator’s
time per data point. Each data collection phase equals the solution change time plus the data
collection time, however the mean time per data point reflects the additional time needed to
pull the patch and validate the jump at the end of the experiment averaged into the timing
for each phase.
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Table 2.5: Concentration response of propofol (PRO) on GABAAR activation and deacti-
vation.
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Table 2.6: † The theoretic maximum values were determined by taking the total operation
time divided by the total time for one successful cycle. Since there are 6 collected data
points per experiment, the theoretical maximum for total collected data points equals the
number of experiments multiplied by a factor of 6.
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CHAPTER 3

INTEGRATE AUTOMATED PATCH CLAMPING FOR GENETICALLY

ENCODED VOLTAGE INDICATORS AND EFFECTORS

3.1 Motivation

Protein sensors of membrane voltage have the potential to revolutionize the way in which

we study brain activity because they provide direct report of neural activity. However, when

compared to other existing protein sensors such as GCaMP, many genetically encoded volt-

age indicators (GEVIs) are still marred by relatively small fluorescence responses, photo-

bleaching, or poor kinetics. The Genetically Encoded Neuronal Effectors and Indicators

(GENIE) project team at HHMI Janelia performs large-scale mutagenesis of GEVI scaf-

folds and screens them to identify constructs with favorable fluorescent responses.

Conventionally, large-scale screening of GEVIs is performed with an automated mi-

croscope that performs field stimulation and concurrent fluorescence imaging in a 96-well

plate [68]. While this approach was fruitful for screening GCaMP variants [69], it is limited

for screening GEVIs. Namely, it cannot be used to infer fluorescence response to various

membrane voltages, and cannot accurately provide information about sensor kinetics. In-

tracellular recording via patch-clamp electrophysiology provides a much richer dataset to

characterize the indicators and is widely used as a ”gold standard” measurement of GEVI

function; however, the technique is laborious and low-throughput. The recent development

of the autonomous ”patcherBot” [31], a walk-away, robotic system that can perform many

patch-clamp recordings sequentially has provided electrophysiologists with the opportunity

to obtain patch-clamp recordings at a rate exceeding human capability. Using it for screen-

ing GEVIs could result in higher throughput and fewer man-hours (e.g. voltage imaging

during electrophysiology recordings; workflow seen in Figure 3.1). However, whether the
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patcherBot can perform high-quality recordings necessary for GEVI characterization was

presently unknown.

Quantitatively, the GENIE project screens ∼100 protein constructs per year using patch-

clamp with one full-time employee. Practically, this translates to ∼1 screened construct per

day. On the other hand, computational simulations suggest that the patcherBot could screen

2-5 constructs per day, a potential two- to five-fold improvement in throughput Figure 3.2.

Further algorithm refinements could further speed up the process. Towards this effort, in a

commercial collaboration, the Finnish micromanipulator company, Sensapex, delivered to

Janelia the first commercial patcherBot system in May 2019. Considerable efforts toward

software, hardware, and biological optimization for GEVI screening was needed to en-

sure the system produced high-quality, consistent results for protein sensor screening (Fig-

ure 3.3). To ensure that the patcherBot@Janelia robot can be left completely unattended

during experiments, there were improvements in cleaning of pipettes in order to ensure

that pipettes could attain over 20 recordings in a screening experiment [32]. To improve

data quality and throughput for screening, there was additional patch clamping refinement

that included (1) mimicking best practices from trained electrophysiologists, (2) checking

recording quality in real time and applying remedies if quality degrades, (3) automatically

selecting cells based on health or fluorescence, and (4) performing auto-calibration. The

robot will be used for large-scale studies of fluorescence response, kinetics, and photo-

bleaching on the scale of ∼4 constructs per day, or approximately 1,000 per year, and its

deployment enabled high-throughput screening pipelines–particularly for sensitivity opti-

mization of future GEVIs such as Voltron.

3.2 Introduction

Genetically encoded voltage indicators have served as an enabling technology for visualiz-

ing neuronal activity at unprecedented spatiotemporal resolution [44, 70, 71]. Nevertheless,

optical imaging of voltage using GEVIs presents many challenges for the design of these
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proteins. An ideal voltage sensor must concurrently fulfill many requirements, including

but not limited to: (1) high sensitivity to membrane potential changes of a neuron, (2) flu-

orescence changes that are fast enough to follow and accurately report APs and (3) high

degree of localization to neuron outer membranes. Further requirements may be desirable

depending on application, such as sensitivity to sub-threshold membrane potential changes,

photostability, and compatibility with two-photon excitation.

One approach to engineering GEVIs involves exploiting the native voltage sensitivity

of microbial rhodopsins. The opsin Archaerhodopsin 3 (Arch) was first successfully used

to optically record APs in neuronal culture [72]; however, it was found to be too dim at

physiologically tolerable imaging powers for in vivo applications. Subsequent protein en-

gineering efforts of Arch yielded improvements in brightness as well as sensitivity, kinetics,

and reduced photocurrents [73, 74, 44, 75, 42]. An alternative strategy to develop bright

rhodopsin-based GEVIs is to create a Förster resonance energy transfer (FRET) pair be-

tween a bright fluorescent protein (FP) and the rhodopsin protein [76]. In this strategy, the

bright FP is the reporter fluorophore, and the rhodopsin is used as the voltage sensitive do-

main. This strategy was successfully implemented to develop Ace2N-mNeon, a bright fast

GEVI that was able to report single APs in vivo [76]. The Ace2N-mNeon member of the

rhodopsin family of GEVIs has been used as a scaffold to create GEVIs with other favor-

able characteristics. Groups at Janelia have previously replaced the FP in Ace2N-mNeon

with a HaloTag protein covalently bound to a small-molecule fluorophore (JaneliaFluor or

JF [77, 78] to create a chemigenetic sensor called Voltron [79].

Integrating automated patch clamping into discovery experiments for better voltage in-

dicators drastically improved the throughput to enable a Voltron variant discovery (Voltron.A122D)

that increased the sensitivity to a single AP by 65% compared to Voltron. This variant

(named Voltron2) also exhibited approximately 3-fold higher sensitivity in response to sub-

threshold membrane potential changes. Voltron2 retained the sub-millisecond kinetics and

photostability of its predecessor, with lower baseline fluorescence. Introducing the same
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Figure 3.1: patcherBot workflow showcasing the use of voltage imaging screening within
the electrophysiology experiment. The difference here versus the original patcherBot is the
addition of voltage imaging during ephys recordings.

Figure 3.2: Estimated throughput model for the voltage imaging-specifc patcherBot based
on the maximum number of cleans per pipette. The red box shows with an average maxi-
mum number of cleans at 20, we can expect around 3.5 constructs screened per day.

A122D substitution to other Ace2 opsin-based voltage sensors similarly increased their

sensitivity. Overall, the inclusion of the patcherBot to screen for better GEVIs have discov-

ered a generalizable mutation that significantly increases the sensitivity of Ace2 rhodopsin-

based sensors, improving their voltage reporting capability.

3.3 Methods and Validation of voltage imaging integration with the patcherBot

3.3.1 Current GEVIs

ASAP1

Accurate optical reporting of electrical activity in genetically defined neuronal popula-

tions is a long-standing goal in neuroscience. Accelerated Sensor of Action Potentials
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Figure 3.3: The physical setup of the patcherBot @ Janelia in collaboration with Sensapex.
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Figure 3.4: From Bando et al., a schematic drawings of the voltage indicator, Acceler-
ated Sensor of Action Potentials (ASAP), and its representative averaged optical traces of
ASAP1 during depolarizing steps (from -70 to 30 mV). Five trials were averaged for each
neuron [80].

1 (ASAP1), a voltage sensor design in which a circularly permuted green fluorescent pro-

tein is inserted in an extracellular loop of a voltage-sensing domain, renders fluorescence

responsive to membrane potential Figure 2.4. ASAP1 demonstrates on and off kinetics

of ∼2 ms, reliably detected single action potentials and subthreshold potential changes,

and tracked trains of action potential waveforms up to 200 Hz in single trials. With a fa-

vorable combination of brightness, dynamic range and speed, ASAP1 enables continuous

monitoring of membrane potential in neurons at kilohertz frame rates using standard epiflu-

orescence microscopy. Thus, for optimization and experimental purposes, ASAP1 provides

a standardized GEVI capable of validating the performance of the patcherBot@Janelia.

Voltron

Encouraged by the ability of point mutations in the rhodopsin domain to alter function, we

performed a large-scale screen of point mutations to find improved versions of Voltron. We

discovered that the introduction of an A122D mutation increased the sensitivity of Voltron,
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particularly in the sub-threshold range, without compromising kinetics, membrane traf-

ficking or photobleaching. Thus Voltron.A122D was named Voltron2 as a next-generation

version of the sensor. Consistent with the observation in culture, in vivo imaging in flies,

zebrafish and mice revealed an increased signal-to-noise ratio (SNR) of Voltron2 compared

to Voltron.

3.4 Methods

3.4.1 Validation of voltage imaging

In order to validate the operation of the patcherBot for GEVI screening, a series of control

experiments were conducted to highlight the efficiency and feasibility. Using ASAP1 as

the voltage indicator control, automated whole-cell electrophysiology was conducted in the

methods stated below.

3.4.2 Neuronal cell culture

Experiments were conducted in accordance with guidelines for animal research approved

by the Janelia Research Campus Institutional Animal Care and Use Committee. Neonatal

rat pups (Charles River Laboratory) were euthanized and neocortices (for field stimulation

experiments) or hippocampi (for patch-clamp experiments), were isolated. Tissue was dis-

sociated using papain (Worthington) in 10 mM HEPES pH 7.4 in Hanks’ Balanced Salt

Solution for 30 min at 37 ◦C. Suspensions were triturated with a Pasteur pipette and passed

through a 40-µm strainer. Cells were transfected by combining 5x105 viable cells with 400

ng plasmid DNA and nucleofection solution in a 25-µL electroporation cuvette (Lonza).

Cells were electroporated according to the manufacturer’s protocol.

For patch-clamp, 2x105 cells were plated onto PDL-coated, 35-mm glass bottom plates

(Mattek, #0 cover glass) in 120 µL of a 1:1 mixture of NbActiv4 and plating medium in

the center of the plate. The next day, 2 mL of NbActiv4 medium was added to each plate.

Plates were incubated for 7-13 days prior to beginning experiments.
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3.4.3 Automated whole-cell electrophysiology

Cultured neurons were patch-clamped at 7-13 DIV at room temperature (23 °C). On the day

of the experiment, cell culture medium was first rinsed with imaging buffer consisting of (in

mM): 145 NaCl, 2.5 KCl, 10 D-Glucose, 10 HEPES, 2 CaCl2, 1 MgCl2 (pH 7.3, adjusted

to 310 mOsm with sucrose). The cells were then incubated with 100 nM JF525 dye for

10 minutes (for Voltron mutant screening only), rinsed twice, and kept in imaging buffer.

For voltage clamp recordings, 1 µM TTX was added to the bath to suppress the generation

of APs. Micropipettes were pulled on a horizontal puller (P-97, Sutter Instruments) to

a tip resistance of 3 to 6 MΩ. For voltage clamp experiments, pipettes were filled with

cesium-based internal solution containing (in mM): 115 CsMeSO4, 15 CsCl, 3.5 Mg-ATP,

5 NaF, 10 EGTA, 10 HEPES, 3 QX-314 (pH 7.3-7.4, 280-290 mOsm). For current clamp

experiments, pipettes were filled with 130 KMeSO4,10 HEPES, 5 NaCl, 1 MgCl2, 1 Mg-

ATP, 0.4 Na-GTP, 14 Tris-phosphocreatine (pH 7.3-7.4, 280-290 mOsm).

To perform automated patch-clamp screening of the top-performing hits from the field

stimulation screen, we used a custom-built Automated uM Workstation, manufactured by

Sensapex (Oulu, Finland), based on the PatcherBot [31]. The system is built around an Ax-

ioObserver 7 inverted microscope (Zeiss), outfitted with a computer-controlled stage, mi-

cromanipulators, and pipette pressure controllers. Pipettes were automatically cleaned be-

tween every patch-clamp attempt with Tergazyme and reused, enabling higher throughput

than possible with manual patch-clamp [60, 31]. Electrophysiology recordings were per-

formed with a Multiclamp 700B amplifier (Molecular Devices), and digitized with a mul-

tifunction data acquisition board (National Instruments PCIe-6259). Neurons were imaged

using a 40×/1.3 NA oil immersion objective (Zeiss), illuminated with high-power LEDs

(Spectra-X light engine, Lumencor) and imaged with a digital sCMOS camera (Hama-

matsu Orca Flash 4.0). To image Voltron525, we used a filter cube containing 510/25 nm

excitation filter, 545/40 emission filter, 525 nm dichroic (Chroma), with a measured power

of 14.7 mW/mm2 in the imaging plane. To image Ace2N-mNeon, the filter cube contained
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a 470/24 nm excitation filter, 525/40 nm emission filter, 506 nm dichroic with a measured

power of 18.1 mW/mm2 in the imaging plane. To image VARNAM, the filter cube con-

tained 575/25 nm excitation filter, 610LP emission filter, 594 nm dichroic, with a measured

power of 32.8 mW/mm2.

The uM Workstation was controlled by the Python platform Acq4 [29], modified to per-

form fully automated electrophysiology (www.acq4.org). To generate fluorescence/voltage

curves, the membrane potential was stepped from +50 to -110 mV in 20 mV increments

from a resting potential of -70 mV (0.5 s baseline, 1 s step). For current clamp recordings,

a short current pulse was injected (2 nA, 2 ms) to evoke APs.

Stimulus timing, baseline fluorescence calculation, background subtraction, and pho-

tobleaching correction was performed the same way as for the field stimulation assay. To

identify responsive pixels, a Mann-Whitney U test was performed between the baseline and

voltage step segments of the recording. The P value criterion to identify responsive pixels

was empirically set to 1e-10.

The onset of each step was fit with the product of a rising and decaying exponential to

capture the transient response (if any), summed with a single rising exponential to capture

the steady-state response. The decay response was fit with a single exponential. Peak

∆F/F0 as well as onset and decay kinetics were calculated at each voltage step as was

done for field stimulation.

3.5 Results

3.5.1 High throughput optimization of the patcherBot for GEVI screening

With Figure 3.5 and Figure 3.6, we see that the comparison for the ∆F/F0 curve of ASAP1

clamped at step-wise voltages yields a similar curve for the patcherBot@Janelia compared

to manual patching. Furthermore, we were able to leave the robot for unattended recordings

past 20 reuses of a single pipette–a goal achieved in order to screen for more constructs per

day.
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Figure 3.5: ASAP1 ∆F/F0 comparison between manual patching and the patcherBot. The
multiple reuses highlights the ability of pipette cleaning for improved throughput. Error
bars are S.E.M.

Further, we see more specifically with an individual cultured neuron that reuse of

pipettes does not affect the quality of voltage clamp recordings. As seen in Figure 3.7,

different neurons were patched sequentially, and qualitatively, their F/F0 did not vary be-

tween neurons. In Figure 3.8, we have an example of the patcherBot in action with a pipette

patched onto a cultured neuron. The active pixels represent the fluorescence change of the

neuron when clamped to specific voltages e.g. the fluorescence of the neuron gets brighter

as the voltage clamps higher. Figure 3.9 shows a zoomed in representation of the active

image capture at 1 kHz. In Figure 3.10A, I show a secondary throughput experiment com-

paring the voltage clamp and fluorescence response between a manual patch experiment

and the patcherBot@Janelia. The manual and robotic voltage clamp representative exper-

iments were conducted with ASAP1 on cultured neurons. Voltage steps were for manual

were from -100 mV to 40 mV in 10 mV steps while the patcherBot voltage clamp experi-

ment voltage steps were clamped from -100 mV to 60 mV in 20 mV steps. Figure 3.10C-D

show that the pipette was cleaned up to the 8th and 9th reuse of the pipette. Lastly, to

validate the robustness of the robot such that it is biologically agnostic, I ran a comparative

experiment of the patcherBot@Janelia on HEK cells transfected with ASAP1 to show that
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Figure 3.6: Representative examples of ∆F/F0 curves between the patcherBot collected
data of commonly used voltage indicator, ASAP1, and a variant of ASAP3b. Error bars are
S.E.M.

the ∆F/F0 response and voltage clamp responses were similar to literature screening in

HEK cells. Overall throughput for this pilot study validating the patcherBot@Janelia are

highlighted in Table 3.1.

Table 3.1: Throughput use case of the patcherBot – over multiple experiment sets (whole-
cells/attempts)

ASAP1, cultured neurons Yield Throughput (∼6 hours)
Whole-cells 51 / 66 = 77.3% 8.5 WC/hr
Whole-cells and viable voltage imaging 30 / 66 = 45.5% 5 WC/hr

3.5.2 High throughput screening of Voltron mutants in neuron culture

Voltron variants were generated using site saturation mutagenesis (SSM) performed at 40

positions within the rhodopsin domain. All screening was performed on Voltron mutants

labeled with JF525 (Voltron525). Positions were chosen based on: (1) previous reports

of analogous positions in other opsins that affected their thermal stability [75], (2) amino

acids in close proximity to the retinal chromophore that we reasoned might affect the envi-

ronment of the Schiff base, or (3) positions that were found to be important in mutagenesis

of Archaerhodopsin into a voltage sensor [44] (Figure 3.12A). We performed two rounds

of screening (Figure 3.12B).
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Figure 3.7: a. Representative voltage clamp and ∆F/F0 data for the patcherBot on the
pipette’s second reuse for a voltage imaging experiment of ASAP1. b. Representative
voltage clamp and ∆F/F0 data for the patcherBot on the pipette’s fourth reuse for a voltage
imaging experiment of ASAP1. Frame number was recorded at 1kHz sampling frequency.

The first-round SSM screen revealed many mutations that moderately increased ∆F/F0.

We therefore embarked on a second round of combinatorial (combo) screening, hoping

that combining 13 of the top performing mutations (Y63L, N69E, V74E/W, R78H, N81S,

L89A/C/G/T, A122D/H, V196P) would further improve the sensor. Of the 1,232 constructs

screened in 106 plates, 77% passed QC. Surprisingly, only 28 of 848 combo mutants (3.3%)

had significantly improved |∆F/F0| max over Voltron2525 (P<0.01, Mann-Whitney U

test;). Similarly, only a few variants had increased SNR (20 of 848, 2.4%). The A122D

substitution was present in 34% of the combo variants passing QC; nevertheless, the combo

screen revealed that combining it with other mutations resulted in less sensitive variants.

Subsequent automated patch-clamp analysis confirmed that Voltron2525, containing the

sole A122D substitution, outperformed all combo mutants.
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Figure 3.8: Example of the patcherBot with voltage imaging experiment for ASAP1 voltage
indiciator. The active pixels represent the imaging field of view at 1 kHz along with a
brightfield image of the pipette patched onto the cell. The cell was voltage clamped from
-100 mV to 60 mV and back to a resting membrane potential of -70 mV in 20 mV steps.
Frame number was recorded at 1kHz sampling frequency.

Figure 3.9: Example of the patcherBot with voltage imaging experiment for ASAP1 voltage
indiciator. The cultured neuron shows fluorescent change when voltage clamped from -100
mV to 60 mV and back to a resting membrane potential of -70 mV in 20 mV steps.

3.5.3 Screening and characterization with automated whole-cell electrophysiology

Many single and combo mutation hits from the neuron culture screen had improved |∆F/F0|

max over Voltron but had very similar ∆F/F0 characteristics among them. We deemed the

field stimulation screen to be insufficiently sensitive to find the one variant with the best

performance, so we used the uM Workstation, a fully automated whole-cell electrophysi-

ology platform based on the patcherBot to perform a secondary screen on top single and

combinatorial mutant hits.

We first validated the throughput and performance of the automated electrophysiology

platform. To mimic a small-scale screen, 10 35-mm Mattek dishes of cultured neurons

were transfected with variants of the voltage sensor ASAP [81]. The uM Workstation made
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103 patch-clamp attempts in 7.1 hours, with a 78% whole-cell success rate. The system

operated unattended for 5 hours during that day of screening. Thus, the uM Workstation

allowed us to screen 10 constructs per day, assuming 5-10 neurons per construct.

The uM Workstation achieves high throughput by automatically cleaning and reusing

patch-clamp pipettes (Figure 3.13A); however, it is conceivable that the cleaning process is

imperfect and whole-cell success rate degrades over subsequent attempts. To address this,

we evaluated pipette performance after multiple patch-clamp attempts. Whole-cell success

rate decreased over time, but likely due to cell health degradation, not due to an accumula-

tion of debris on the reused pipette, since replacing the pipette did not recover the success

rate. In a separate experiment we replaced the dish without replacing the pipette, and

found that the success rate recovered, further suggesting that cell health degradation, not

pipette debris is responsible for the apparent decrease in success rate. To explore the limits

of pipette cleaning, we patch-clamped cells with the same pipette, replacing the plate as

needed, until the time to form a gigaohm seal increased, indicating a contaminated pipette.

Consistent with previous observations, a single pipette could be used for patch-clamping

50 neurons [31]. Last, we evaluated the quality of the recordings and found 85.6% (143

out of 167) of the successful whole-cell recordings had a holding current greater than –100

pA and Access Resistance (RA) less than 30 MΩ, which meets the criteria for most of the

published data acquired with manual patch clamp. Together, we found that the automated

uM Workstation successfully increased our throughput, enabling large-scale patch-clamp

studies, without compromising data quality.

Using the uM Workstation we then screened top-performing single-position mutants

from the field stimulation screen (the SSM screen described above), including Voltron as a

control. While Voltron525.V74G and Voltron525.V74W were the top performers from the

field stimulation screen, their fluorescence response to a 100 mV voltage step was lower

than that of Voltron2525 (Figure 3.13B). The other mutants were also 8% to 55% less

sensitive to 100 mV voltage steps than Voltron2. Meanwhile, Voltron2525 was found to be
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65% more sensitive than Voltron, consistent with the field stimulation screen. Furthermore,

in the physiologically relevant sub-threshold voltage range (-90 to -50 mV), Voltron2525

exhibited a significantly steeper slope than Voltron525 (0.54+0.01 and 0.21+0.01%/mV,

respectively; P = 0.0009, Mann-Whitney U test), making it a higher-fidelity optical reporter

of changes in sub-threshold membrane potential.

Surprisingly, the combo mutation screen (second round of the field stimulation assay,

Figure 3.12B) yielded few variants with improved sensitivities. We nevertheless screened

the 34 variants with sensitivities marginally better than Voltron2525 using the uM Work-

station. As was the case with the single-position mutants, we found no combo mutants that

out-performed Voltron2525 (Figure 3.13C). Therefore, for the remainder of this study, we

focused on characterization of Voltron2525.

Voltron2525 exhibited fast onset and decay kinetics that were best fit with a double

exponential (Figure 3.12D). Interestingly, the A122D mutation completely eliminated the

transient peak in the fluorescence response of Voltron525 (Figure 3.13B inset). The fast

component of the onset and decay kinetics was slightly shorter for Voltron2525 (onset:

0.67±0.03 ms, decay: 0.89±0.09 ms) compared to Voltron525 (onset: 0.85±0.06 ms, de-

cay: 1.13±0.08 ms), though not significantly different. The slow components were like-

wise similar between the two sensors (Voltron525: onset 3.26±0.47 ms, decay 6.27±1.41

ms; Voltron2525: onset 4.76±0.92 ms, decay 4.74±0.32 ms). The fast component of

Voltron2525 accounted for a larger percentage of the overall response in the onset but not

decay response (Figure 3.13E). Overall, the kinetic properties of Voltron525 and Voltron2525

were found to be qualitatively similar.

Consistent with the improved sensitivity of Voltron2525 in response to voltage steps, it

was also superior in its sensitivity to APs. Voltron2525 reported single APs with ∆F/F0

of 10.09+1.47%, significantly higher than for Voltron525 (6.16+0.74%, Figure 3.13F,G).

The baseline fluorescence of Voltron2525 was 30% lower than Voltron525, which may

be beneficial in some experiments but detrimental in others (Figure 3.13H). Nevertheless,
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both Voltron2525 and Voltron2525-ST showed good membrane localization, qualitatively

similar to their Voltron counterparts [79]. In culture, Voltron2525 photobleached slightly,

but not significantly, slower than Voltron525 (Voltron525: 45±2%, Voltron2525: 41±1%

reduction in fluorescence; P=0.11, Mann-Whitney U test; Figure 3.13I).

We believe that the A122D mutation responsible for increased sensitivity of Voltron2525

could have beneficial properties when grafted onto other Ace rhodopsin-based GEVIs. We

tested this hypothesis in Ace2N-mNeon and VARNAM. As expected, adding the A122D

mutation to both GEVIs increased their sensitivity to depolarizing and hyperpolarizing volt-

age pulses (Supplementary Fig. 9). Similar to Voltron2525, A122D significantly increased

the slope of the sensors in the sub-threshold range (Ace2N-mNeon: 0.091±0.012 %/mV,

Ace2N-mNeon.A122D: 0.303±0.012%/mV, P=0.006; VARNAM: 0.104 ± 0.012%/mV, VAR-

NAM.A122D: 0.147 ± 0.010/mV, P=0.045; Mann-Whitney U test). The mutation elimi-

nated the transient peak from VARNAM but not from Ace2N-mNeon.

Various high-throughput platforms have been developed that have been used to screen

for improved GEVIs [73, 82, 42]. The majority of these platforms utilize bacteria or tissue

culture cells for screening. We instead opted to perform our high-content primary screen

in dissociated neurons, a costlier and more time-consuming strategy, but one that maxi-

mized the compatibility of the resulting sensor with in vivo neuronal imaging. Even still,

our field stimulation screen was insufficiently sensitive to disambiguate the top-performing

sensors. We therefore relied on the automated patch-clamp system that afforded us the abil-

ity to screen dozens of sensors faster than possible manually, without compromising data

quality. The system had a lower throughput than the field stimulation screen but enabled

us to characterize the sensitivity and kinetics of many variants with much higher fidelity.

The combination of both field stimulation and patch-clamp screens provided a high-quality

assessment of top-performing variants.

Increasing the sensitivity of GEVIs (the difference in photon flux per millivolt change

in membrane potential) and reducing photobleaching still remain the main challenges to
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increase the adoption of GEVIs for in vivo experimentation. Protein engineering efforts

devoted to creating two-photon-compatible GEVIs will also be required to address the

emerging trend in the field to image deep in the brain while maintaining single-cell resolu-

tion. Chemigenetic indicators like Voltron2 continue to be promising scaffolds to address

these goals.

3.6 Opsin Screening and PatcherBot Integration

In addition to screening for genetically encoded voltage indicators, the patcherBot was

applied to an optogenetics screen to showcase a secondary application of the patcherBot

enabling screening for genetically encoded effectors (light stimulation in the electrophys-

iology recording) in Figure 3.14 [42]. Here, the setup for the patcherBot screening rig is

reverted to the original upright microscope.

3.6.1 Opsin autopatching significance

Patch clamp recording is the gold standard method for resolving millivolt- and millisecond-

scale dynamics and ion conductances of light activated channels. Although laborious,

screens that incorporate patch clamp electrophysiology have produced rich data sets to

drive further opsin discovery Figure 3.15A. For example, in 2014, the Boyden Lab used

1000 manually patched cells to screen approximately 120 opsin variants from different al-

gal species, identifying opsins that had high photocurrents (CoChR), red-shifted activation

spectra (Chrimson), and improved kinetics (Chronos)[41, 43, 42].

3.6.2 Implementation towards directed evolution platform capable of high-throughput

screening of optogenetic tools

With the patcherBot capable of using a single pipette to patch 12-15 cells per hour in

a closed-loop process that can run unattended for 3 or more hours, I can perform directed

evolution along dimensions difficult to optimize for using imaging, specifically kinetics and
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potassium selectivity/conductance. Figure 3.15B shows a representative example of HEK

cells transfected with channelrhodopsin-2 under the microscope of the patcherBot. In one

preliminary experiment, the patcherBot was used to record photoactivated currents from

HEK cells transfected with Channel-rhodopsin 2 (ChR2) at a rate of 9 whole cell record-

ings per hour and a whole cell yield of 92% (46 whole cells, 50 attempts, total time = 5 hrs

13 minutes) (Figure 3.16). Building on this discovery, one can imagine a systematically-

optimized multi-pipette version of the patcherBot that can record light activated currents at

a conservative rate of 200 cells per day that will be integrated with existing image-based

multidimensional screening robot. This approach represents a dramatic expansion of the

toolbox for multidimensional directed evolution and has the potential to discover tools that

will address both new and longstanding needs in the field of optogenetics.
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Figure 3.10: a. Manual voltage clamp representative experiment of the voltage indicator,
ASAP1, on cultured neurons. Voltage steps were from -100 mV to 40 mV in 10 mV
steps. b. patcherBot voltage clamp experiment of the voltage indicator, ASAP1, on cultured
neurons. Voltage steps were clamped from -100 mV to 60 mV in 20 mV steps. This panel
represents the 8th reuse of the pipette. c. patcherBot voltage clamp experiment of the
voltage indicator, ASAP1, on cultured neurons. Voltage steps were clamped from -100 mV
to 60 mV in 20 mV steps. This panel represents the 8th reuse of the pipette. d. patcherBot
voltage clamp experiment of the voltage indicator, ASAP1, on cultured neurons. Voltage
steps were clamped from -100 mV to 60 mV in 20 mV steps. This panel represents the 9th
reuse of the pipette. Frame number was recorded at 1kHz sampling frequency.
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Figure 3.11: patcherBot voltage clamp experiment of the voltage indicator, ASAP1, on
cultured HEK cells. Representative brightfield and active pixel FOV image. In the active
pixels image, the red circle reepresents the current patched cell, and the green circle repre-
sents a future cell of interest to patch. Voltage steps were clamped from -100 mV to 60 mV
in 20 mV steps. Frame number was recorded at 1kHz sampling frequency. Representative
standard ∆F/F0 curve collected for ASAP1 HEK cells.

Figure 3.12: Mutagenesis and screening of Voltron in cultured neurons. a. Residues tar-
geted for SSM in the Ace2N rhodopsin domain of Voltron, colored by the rationale for
targeting them. b. Mutagenesis and screening workflow.
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Figure 3.13: Automated patch clamp screening and characterization of Voltron2 in cultured
neurons. a. Fully automated uM workstation screening platform, based on PatcherBot. The
pipette cleaning procedure is shown where a used pipette is dipped into a reservoir of clean-
ing solution (step 1, “c”) and back to the neuronal culture for a subsequent patch-clamp at-
tempt without the need for replacing the pipette (step 2). b. Peak fluorescence responses to
voltage steps (-70 to +30 mV) of Voltron525, Voltron2525 and the top two variants from the
field stimulation assay (mean ± s.e.m.; Voltron2525 vs. Voltron525: p=0.012; Voltron2525
vs. Voltron525.V74G: p=0.015; Voltron2525 vs. Voltron525.V74W: p=0.0003, one-way
ANOVA followed by Dunnett’s post-hoc test). Inset: Voltron525 and Voltron2525 fluo-
rescence traces (solid line: mean, shading: s.e.m.) in response to -70 to +30 mV voltage
steps. N values (neurons) indicated in figure. c. Mutated residues from 1st screening round
(single sites) colored by the maximum ∆F/F0 response to 100 mV (-70 to +30 mV) volt-
age steps, measured with the uM workstation. Top mutations at each position are labeled.
d. Onset (top) and decay (bottom) fluorescence kinetics of Voltron525 and Voltron2525
in response to a +100 mV voltage step from -70 mV. Vertical axis scaled to match ∆F/F0

between the sensors. e. Onset and decay kinetics (mean ± s.e.m.) of the traces in (d). Onset
kinetics: *p=0.03, Mann-Whitney U test. Decay kinetics: *p=0.03, Mann-Whitney U test;
Voltron525: n=4, Voltron2525: n=4. f. Representative fluorescence responses to single
evoked APs in current clamp. Scale bar: 10 µm. g. ∆F/F0 in response to single AP stim-
ulation in current clamp mode (mean ± s.e.m.; *p=0.03, Student’s t test, Voltron525: n=5,
Voltron2525: n=7). h. Normalized resting fluorescence relative to mTagBFP2 fused to the
C terminus (mean ± s.e.m.; ****p < 0.0001; Voltron525: n=105 cells, Voltron2525: n=115
cells, Student’s t test). i. Photobleaching comparison of Voltron5 25 and Voltron2525 over
10 mins (solid line: mean; shading: s.e.m.). All experiments were performed at room tem-
perature.

Figure 3.14: patcherBot workflow showcasing the use of opsin screening within the elec-
trophysiology experiment. The difference between the original patcherBot is the addition
of light stimulation during the ephys recording.
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Figure 3.15: a. From Noguchi et al., an example of Channelrhodopsin 2 and eGFP are arti-
ficially expressed in specific excitatory cells (green, triangle) in layer 2/3 of the barrel cor-
tex [83]. Whole-cell recordings are made from fluorescent-targeted cells (red, circle), and
light-induced membrane potential fluctuations of these GABAergic neurons are recorded.
b. HEK cells expressing ChR2 on the PatcherBot. Scale bar: 10 µm
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Figure 3.16: In one preliminary experiment, the patcherBot was used to record photoacti-
vated currents from HEK cells transfected with ChR2 at a rate of 9 whole cell recordings
per hour and a whole cell yield of 92% (46 whole cells, 50 attempts, total time = 5 hrs
13 minutes. Representative experiment summary of 10 cells show the position and voltage
clamp recordings. Current traces are in response to 3 LED (470 nm) pulses of 500 ms.
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CHAPTER 4

DEEP LEARNING-BASED REAL-TIME DETECTION OF NEURONS IN BRAIN

SLICES FOR IN VITRO PHYSIOLOGY

4.1 Introduction

Whole-cell patch clamp electrophysiology, a gold standard technique in neuroscience, is

a high-fidelity method used to monitor the biophysical mechanisms of neural activity at

the single neuron level. Whole-cell patch clamp experiments allow the user to report cur-

rent and voltage fluctuations at a spatiotemporal resolution beyond the capability of other

techniques [2]. However, the technique is considered highly laborious and low throughput

since it involves utilizing a glass micropipette to probe a cell individually—the trade-off for

exceptional signal quality—preventing its widespread use for high-throughput screening.

Typically, in vitro patch clamp experiments are done manually in which the user views an

acute brain slice under a microscope, visually selects a neuron to patch, moves the pipette

close to the cell, creates a high resistance (”giga-ohm”) seal between the pipette and cell,

and breaks into the membrane to create a whole-cell configuration. These experiments

allow scientists to monitor complex biophysical phenomena such as voltage and current

fluctuations of single neurons.

One of the most crucial initial steps in the patch clamping process is identifying a

healthy cell. The edges of a healthy neuron under differential interference contrast DIC

are often unclear and vary widely in shape and size. Moreover, the milieu of brain tissue

not only consists of neurons, but also cerebrospinal fluid, blood vessels, and glia, among

other extracellular content which induce significant light scattering under DIC, an optical

technique widely used for observing unstained biological samples. While fluorescence

microscopy may be used for identifying somas in acute slice patch clamp experiments, it is
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not always practical since it requires the use of dyes or genetically engineered production of

fluorophores [84]. Rather, it is often desirable to image label-free, yet optically transparent

samples which require the use of DIC.

Previous work has demonstrated success in automating cell detection in cultured cells

[85, 86], via methods such as image segmentation and image enhancement techniques.

Vicar et al. tested a handful of tools designed to detect cultured cells and compared them

using the F1 score, a metric commonly used to measure object identification accuracy. The

average F1 score reported for the methods which used DIC and additional preprocessing

was 0.76. The average F1 score for the same methods on raw images was 0.50, indicating

preprocessing may improve performance of object detection methods.

However, common image enhancement techniques, in concert with edge detection al-

gorithms, are not robust enough for application in acute slice because the nature of the

images under DIC yields more scattering than cultured cells. In addition, there are several

cell segmentation and tracking methods that are not directly applicable to cell detection un-

der DIC in tissue [87]. To overcome this obstacle, this work adapts a deep neural network

to identify neurons in acute slice—particularly pyramidal neurons in the layer 5 cortex of

the mouse brain. While there has been a myriad of convolutional neural networks (CNNs)

used for identifying cells, most applications are used on images post-experiment either for

cell detection on slides, cell cultures, or for cell segmentation of 3-D connectomics [88, 89,

90, 91, 92].

Since this is such a critical task, often requiring significant experience to identify healthy

cells, automation of the cell identification and selection process is a difficult, necessary step

towards completing full automation of patch clamp as well as in assisting novices how to

identify cells. Research groups enabling the automation of patch clamp have alluded to the

potential benefits of automating this task, though the problem is not yet fully resolved [31,

38, 93]. Koos et al. have recently shown a CNN that identifies somas under DIC, though

their network required substantial time and over 31,000 annotated neurons for training

64



[45]. In this study, we aimed to achieve similar accuracy on a smaller, faster CNN that

can quickly nominate cells for patch clamp experiments. Our deep learning-based method,

quantified by F1 scores and mean average precision (mAP), is comparable to published

work on cultured cell identification and other deep learning based solutions for cell de-

tection. Thus, we show that transfer learning using the YOLOv3-CNN architecture can

require minimal training resources and enable fast, accurate neuronal detection for images

gathered on live, acute brain slices.

Figure 4.1: After initial (a) training and validation using annotated input images, testing
(b) shows a successful detection of neurons in unannotated, unaltered images.

4.2 Methods

For the purposes of automated neuronal detection in acute brain slices, we utilize the de-

fault architecture of the YOLOv3 neural network, most notable for its speed and accuracy

of detection [94, 95]. In order to increase speed in object detection, YOLO reframes object

detection as a single regression problem, mapping straight from image pixels to bounding

box coordinates and class probabilities. In addition, YOLO looks globally on the entire

image when making predictions. The primary motivation for selecting an architecture op-

timized for speed and accuracy is to apply the network to a video or real-time imaging.
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Thus, our methods include using transfer learning with the YOLOv3 architecture to pro-

vide a default model to fine-tune. A representative workflow is represented in Figure 4.1.

4.2.1 Implementation

Acquisition of Acute Brain Slice Images

All acute brain slice samples and images were captured utilizing the hardware and software

configuration according to Kolb et al [96]. The system was based on a conventional electro-

physiology setup (SliceScope Pro 3000, Scientifica Ltd), and the samples were imaged us-

ing a 40x objective (LUMPFLFL40XW/IR, NA 0.8, Olympus) on a motorized focus drive,

illuminated under DIC with an infrared light-emitting diode (Scientfica), and captured with

a Rolera Bolt camera (QImaging). All animal procedures were in accordance with the US

National Institutes of Health Guide for the Care and Use of Laboratory Animals and were

approved by the Institutional Animal Care and Use Committee at the Georgia Institute of

Technology.

Annotation Procedure

Annotations were made manually using LabelImg, an open source graphical image anno-

tation tool written in Python [97]. Annotations were saved as XML files in PASCAL VOC

format, the format as used by ImageNet [98]. Healthy neurons were annotated and labeled

by drawing a bounding box around them. The rectangular boxes varied in size and were

allowed to intersect with each other.

The training, validation, and test data sets consisted of 1280x1024, 8-bit raw images

of acute slices under DIC. Within the training and validation data sets, 369 original, raw

images were used with a total of 1138 annotated neurons. For the trained CNN test data

set, a smaller set of 37 images was used containing 107 annotated neurons. Since we are

using transfer learning on a pre-trained model, a smaller data set for training and validation

is appropriate to obtain sufficient accuracy. All data sets will be made publicly available at
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autopatcher.org.

Convolutional Neural Network: YOLOv3

As mentioned previously, healthy cells from raw images of acute slice under DIC are dif-

ficult even for humans to identify. As an immediate effort to improve our ability to de-

tect cells, using Python, we applied traditional image enhancement techniques to increase

contrast and sharpen edges to the human eye. However, the advantages of preprocessing

training data in machine learning have not been confirmed, motivating this work to also

compare two training models to reveal whether or not image enhancement (using custom

Python scripts and the OpenCV library) improved the performance of the neural network.

Histogram equalization, an image processing technique commonly used for improving con-

trast, both enhances contrast and preserves detail in the images. We compared a network

trained on raw, unaltered images to a network trained on histogram equalized images. His-

togram equalization was the only image enhancement technique used to create training and

validation data sets, so hereafter we will refer to those data sets as ”enhanced” for concise-

ness. Data sets without image enhancement will be referred to as ”unaltered.”

For both the unaltered image and the enhanced image data sets, they were randomly di-

vided into a training and validation set at a 10:1 ratio. The input image resolution was set to

416x416 pixels. While downsampling the images to 416x416 introduces some unintended

artifacts of reduced resolution, there is a desired trade-off between computational time and

accuracy. Secondly, the dimensions of the input image are resized while maintaining the

image aspect ratio. For example, the longer dimension, 1280, is scaled to 416 and the sec-

ondary dimension, 1024, is scaled to 332.8 pixels. The remaining pixel area is black pixels.

The YOLOv3 network architecture consists of a backbone network called Darknet-53, an

up-sampling network, and the detection layers called YOLO layers [94, 95].

As stated previously, transfer learning fine-tunes a pre-trained neural network model.

Since the model does not need to be trained from scratch, transfer learning is often a suitable

67



choice when training with limited training and validation data sets. Moreover, transfer

learning has the potential to improve network performance and training time [99]. The

initial model of our CNN was pre-trained on the Imagenet data set [95]. The final 3 layers

were initially trained with our custom acute brain slice data set for 10 epochs before all

layers were unfrozen and the entire network was trained on the data set for 40 more epochs

for a total of 50 epochs. If loss reached a steady state value, the training would stop early.

In addition, YOLOv3 object detection utilizes non-max suppression (NMS) which was

also utilized here to classify the determined predictions. The intersection over union for

NMS was set to 0.45 as based on machine learning standards.

Training computations were conducted on a desktop PC with a 3.7 GHz Intel Core

i7-8700K, 32GB RAM memory and an NVIDIA GeForce GTX 1080. For trained model

evaluations, the software was run on a notebook PC with a 2.8 GHz Intel Core i7-7700HQ

and 16GB RAM memory.

4.2.2 Evaluation metrics of YOLOv3 performance

Generally, trained networks can be assessed quantitatively through the metrics of precision

(P) and recall (R),

where Tp is the number of true positive classifications, Fn is the number of false nega-

tives, and Fp is the number of false positives. Precision represents how likely a prediction

will be accurate. On the other hand, recall represents how accurate the model is based on

correct classifications and classifications it failed to identify. Therefore, for an ideal model,

it is desired to have both precision and recall equal to 1, or 100%.

In this study, PASCAL VOC-style Average Precision (AP) at a single intersection over

union (IOU) threshold of 0.45 was calculated to evaluate the models trained by the loss

function of YOLOv3 [100]. Although the general definition of AP is the area under the

precision-recall curve,

AP =

∫ 1

0

P (R)dR, (4.1)
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the interpolated precision-recall, ”P(R)”, curve is piece-wise constant. Therefore, with the

number of recall values, we define AP as described in Cartucho et al. [101]

Since AP is the integration of precision with respect to recall, and the ideal precision

and recall values are both 1, the ideal AP is also 1, or 100%. Mean average precision

(mAP) is especially helpful for multi-class studies, since it is the average AP of each class

the network can identify. While there is only one class (‘neuron’) in this study, we will use

the common notation of mAP hereafter.

Another common metric used for quantifying the performance of neural networks is the

F1 score, [92]:

F1 = 2
PR

P +R
, (4.2)

which is particularly useful when determining the optimal balance between precision and

recall. Since the ideal network would yield precision and recall equal to 1, the F1 score

would then also be 1.

The last metric used describes the accuracy of the model using true positives (TP), false

positives (FP), and the ground truth (GT) annotations where,

Accuracy =
TP

GT + FP
(4.3)

such that the ideal model would be 100% accurate should all its guesses match the ground

truth annotations without false positives.

4.2.3 Real-time detection and patch clamp validation

Brain slice preparation

All animal procedures were in accordance with the US National Institutes of Health Guide

for the Care and Use of Laboratory Animals and were approved by the Institutional Animal

Care and Use Committee at the Georgia Institute of Technology. For the brain slice experi-

ments, male mice (C57BL/6, P31–P46, Charles River) were anesthetized with isofluorane,
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and the brain was quickly removed. Coronal sections (300 µm thick) were then sliced on a

vibratome (Leica Biosystems VT1200S) while the brain was submerged in ice-cold sucrose

solution containing (in mM) 40 NaCl, 4 KCl, 1.25 NaH2PO4·H2O, 7 MgCl2, 25 NaHCO3,

10 D-Gluocse, 0.5 CaCl2·2H2O, 150 Sucrose (pH 7.3–7.4, 300–310 mOsm). The slices

were incubated at 37 °C for 1 h in Artificial Cerebro-Spinal Fluid (aCSF) consisting of (in

mM) 124 NaCl, 2.5 KCl, 1.25 NaH2PO4·H2O, 1.3 MgCl2, 26 NaHCO3, 10 D-Gluocse, 2

CaCl2·2H2O, 1 L-Ascorbate·H2O (pH 7.3–7.4, 290–300 mOsm). Prior to recording, the

slices were maintained at room temperature for at least 15min (22 °C–25 °C). The sucrose

solution and neuronal ACSF were bubbled with 95% O2/5% CO2. Recordings were per-

formed in mouse primary visual area cortex.

Patch-clamp recording

Borosilicate pipettes were pulled on the day of the experiment using a horizontal puller (P-

97, Sutter Instruments) to a resistance of 4–5 MΩ. The intracellular solution was composed

of (in mM) 135 K-Gluconate, 10 HEPES, 4 KCl, 1 EGTA, 0.3 Na-GTP, 4 Mg-ATP, 10

Na2-phosphocreatine (pH: 7.2–7.3, 290–300 mOsm). Recordings were performed at room

temperature with constant superfusion of oxygenated neuronal ACSF. During the patch

clamp experiment, the YOLOv3 neuron detection algorithm, using the unaltered trained

network, was run on the desktop PC with the NVIDIA GeForce GTX 1080 GPU on a

custom python script to interact with the Rolera Bolt camera. Pipette pressure during patch

clamp steps was digitally controlled and pipettes were cleaned according to Kolb et al [60,

31].
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4.3 Results

4.3.1 Digital Image Processing for Acute Brain Slices

Conventional Cell Detection and Image Enhancement

To the human eye, Figure 4.2A shows conventional image enhancement techniques marginally

improve the visual aid of acute, brain slice images. With binarized thresholding using

Otsu’s Method (threshold = 144), we have improved contrast on the edge of neurons, but

parts of the image become completely blacked out. Contrast stretching and intensity-level

slicing do not enhance the soma boundary of the neuron. Likewise, Gaussian sharpening,

while increasing the brightness of the image, also does not enhance the soma boundary of

the neuron. The inverse, binary mask of the Gaussian adaptive threshold filter shows en-

hanced soma boundaries but removes any background signal. The contour and Laplacian

techniques support the consensus that it is difficult for conventional image processing to de-

termine what is a healthy neuron in a brain slice. However, the best enhancement amongst

the group, histogram equalization improves neuron edge contrast while maintaining a ma-

jority of the contrast in the background signal. While the adaptive filters and histogram

equalization individually make promising image enhancement changes to the original im-

age, the combination of the two in series create a broad generalization of the brain slice

image that also reduces the overall information of the image.

To demonstrate that deep convolutional neural networks are necessary for detecting

healthy neurons in acute slice, Figure 4.2B shows the results of Canny edge detection on the

original image, histogram equalization, and a series of histogram equalization and bilateral

filtering. The edge detection images (top) show Canny thresholding prior to any dilation,

but on closer inspection, any dilation mask would significantly change the information of

neurons present in the slice. Furthermore, in the cell segmentation images (bottom), the

white circles overlaid the original image show that the predicted cells, according to the cell

segmentation by Hough Circle Transform, are inaccurate.
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4.3.2 YOLOv3 Neuron Detection

As previously described, we compared the performance of a network trained on only unal-

tered images to a network trained on enhanced images. A representative example image of

an unaltered image and an enhanced image is shown in Figure 4.3a.

When evaluating the performance of these networks, two metrics can be adjusted to

increase or decrease the accuracy of the network’s predictions: (1) the confidence threshold,

a measure of the probability that a prediction contains an object and (2) the aforementioned

IOU. In order to optimize confidence threshold, we evaluated the networks with the F1

scores, using a constant IOU according to machine learning standards (0.45) and a range

of confidence thresholds from 0.1-0.9. The relationship between F1 score and confidence

threshold for the unaltered network tested on unaltered images can be found in Figure 4.3b.

Since there is a peak in F1 score over the range of confidence thresholds, the optimal

confidence threshold of 0.3 was used for all further analyses.

In order to test the unaltered and enhanced trained YOLOv3 networks, we evaluated

and compared their performance using precision recall and mAP. Precision recall is a useful

measure of prediction success. In information reasoning, precision measures the accuracy

or percentage of correct predictions, while recall measures how good it is at finding all the

correct objects. Figure 4.3c shows the precision-recall curves for both networks, tested on

both enhanced and unaltered inputs. The mAP is the area under this curve, summarized in

Table 4.1 and displayed in Figure 4.3d.

The unaltered trained network was trained on images without preprocessing. The mean

average precision of this network tested on an unaltered test image data set was 77.00%,

while the same network tested on a enhanced data set was 54.62%. Conversely, the en-

hanced trained network was trained on images enhanced with histogram equalization [102].

The mean average precision of this network was 59.10% with unaltered test images and

71.93% on enhanced images.

The F1 scores of both networks are summarized in Table 4.2 and displayed in Fig-
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ure 4.3e. The F1 scores of the unaltered network tested on unaltered and enhanced images

were 0.8 and 0.67, respectively. The F1 scores for the enhanced network were 0.61 and

0.76, respectively.

4.3.3 Inference Results

The training loss and validation loss for both networks shown in Figure 4.4a highlight the

neural network quickly fitting to the training set and converging towards a steady-state of

trained weights.

While the results of the models over enhanced images provide relevant information

over the precision of the networks, generally, preprocessing each frame during a real-time

live-imaging experiment would cause latency issues so further accuracy and confidence

score distributions are studied using only the unaltered test images data set. As seen in Fig-

ure 4.4b, the mean accuracy of the unaltered net was 0.703±0.296 while the enhanced net

was 0.378±0.306 (student’s t-test p < .001). Figure 4.4c shows the confidence scores dis-

tribution for unaltered and enhanced networks tested on the unaltered data set test images.

The notches represent the Confidence Interval (CI) around the median, 0.599 and 0.711,

respectively. The ends of the boxes are at the first and third quartiles while the whiskers

represent the minimum and maximum confidence scores.

Examples of each network identifying neurons in a test image can be found in Fig-

ure 4.4d and Figure 4.4e. On the left half side of each subfigure display, each model’s

reasoning for a neuron is overlaid with red prediction bound boxes on a representative test

image. On the right half side of each subfigure, the prediction of the CNN is graded against

the expert-annotated test image. A green box represents a correct prediction (true positive).

A blue box represents the original annotated bounding box. A red box represents a model

prediction that is a false positive. And lastly, a pink box denotes an annotated neuron that

was missed by the model (false negative).

Although our average reported inference time for an image was 580± 147 ms, this can
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be attributed to testing the trained models on the CPU of the notebook PC described in the

Methods section. Average inference time testing the trained models on the GPU described

in the Methods section was 56.7±1.43 ms. This provides an 18 frame per second real-time

detection rate. Furthermore, the training time for each of the models was 18 minutes.

Unaltered Input Enhanced Input
Unaltered Trained Network 77.00% 54.62%
Enhanced Trained Network 59.10% 71.93%

Table 4.1: Mean average precision of unaltered and enhanced trained networks tested on
unaltered and enhanced input images.

Unaltered Input Enhanced Input
Unaltered Trained Network 0.80 0.67
Enhanced Trained Network 0.61 0.76

Table 4.2: F1 score of unaltered and enhanced trained networks tested on unaltered and
enhanced input images.

4.3.4 Patch Clamp Experiments

To validate the health of the identified cells, we performed a set of patch clamp experiments

on neurons identified by one of the trained neural networks. We chose to use the unaltered

trained network since it demonstrated the greatest mAP and F1 scores. A representative

image of a neuron identified by the network in patch clamp whole-cell configuration is

shown in Figure 4.5a. The distribution of access resistance from these experiments (n = 9)

is displayed as a box plot in Figure Figure 4.5b. The average RA was 29.25 MΩ. The ends

of the boxes are the first and third quartiles (18.7 MΩ and 28.27 MΩ, respectively) while the

whiskers are located at 12.97 MΩ and 37.86 MΩ. Further, 8 of 9 patched cells were within

the accepted range among patch clamp experts (< 40 MΩ) [31]. Representative current

clamp and voltage clamp traces are shown in Figures Figure 4.5c and d, respectively.
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4.4 Discussion and Conclusion

The use of patch clamping in mammalian brain slices is well documented [103, 104], yet

the majority of the technique is still done manually. While research groups have made

improvements to automate many of the painstaking steps involved with patch clamping in

vitro [60, 38, 31, 26], the initial act of selecting a healthy neuron to patch still has yet to be

resolved. Thus, the development of this tool enhances patching not only for automated rigs

but also for manual patching.

In this study, we developed a method for detecting neurons in acute, rodent brain slice

for anticipatory use towards assisting patch clamp experiments. We then validated the

method’s ability to identify healthy cells by patch clamping neurons identified by the best

performing network (unaltered trained network). The application of this neural network in

the context of patch clamp has great potential to help fully close the loop towards complete

automation of the patch clamp technique on acute brain slices and reduce the need for im-

mense training and skills required for manual identification of healthy cells. The YOLO

network architecture’s speed and accuracy are conducive for nominating healthy neurons

in acute brain slice in real-time with a display and detection rate of 18 frames per sec-

ond. Thus, this neuron detection method is a tool not only valuable for initially identifying

neurons for patching, but it could also provide tracking of the cell location as the slice is

moved during an experiment to aid in throughput and quality of the recording. In addition,

this work could have several secondary benefits that address the requirements for highly

reproducible data [67]. By removing the user from the cell selection process, it inherently

reduces experimenter bias, reduces type I & II error and increases experimental rigor.

Both networks performed best when tested with input images that were similar to

their respective training data sets. Interestingly, while preprocessing may have improved

the contrast of cell boundaries to the human eye, it did not improve the network perfor-

mance most likely because the enhanced contrast has introduced artifacts that interfere
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with the boundaries of the cells. The statistically significant difference in the mean accu-

racy between the unaltered and enhanced networks support this finding by a student’s t-test

(α=0.05), p<.001. Most likely, the non-linear contrast enhancement degraded the image

and reduced detectable linear features that may improve a model’s precision and accuracy.

Furthermore, while the median for the enhanced net is higher than the unaltered net in

the distribution of confidence scores, the lower mean accuracy score for the enhanced net

shows it may be misleading to determine a neural network’s efficiency and precision based

on its confidence score.

This study also had some limitations. Since only one class of neurons were chosen,

and image acquisition was time-consuming, there was a limited number of images—thus,

neurons—for training the neural network for neuron detection. However, further collabo-

ration with patch clamp research groups can help increase the speed and quality of image

acquisition. While Koos et al. have conducted a similar deep learning-based method for

neuron detection in slice [45], our method achieves similar precision while being more effi-

cient and user-friendly. Using YOLOv3, our F1 score of 80% is comparable to the F1 score

of 83.5% by Koos et al. In addition, our CNN has a reduced neural net training time of 0.3

hours while Koos et al. took 159 hours—a 98% reduction. Thus, the deep learning method

presented here demonstrates the promise of implementing CNNs even further in the field

of electrophysiology. Our study introduces the feasibility of performing classification tasks

on acute brain slices by using a sparsely annotated data set (our sparsely annotated data

set of 1138 neurons compared to 6344 annotated neurons by Koos et al.) Furthermore, we

have demonstrated the advantage of transfer learning in improving network performance,

especially when limited data is available, and confirmed that current image enhancement

techniques do not necessarily help neural network performance.

The image enhancement techniques used in this method are not comprehensive, and

other image enhancement techniques can also be explored particularly for low-contrast,

gray-scale images [105] and use of Kalman filtering [106]. In addition, future work can
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include customizing the YOLO architecture to optimize network training for our data sets,

training on a greater number of annotated images, and upgrading the object detection ar-

chitecture to YOLOv4 for improved precision. Pruning the YOLO architecture can also

improve neuron detection speed [107]. Moreover, this technique could be used to detect

and analyze subcellular features such as spines, dendrites, or axons.

Current software will be publicly available on Github (https://github.com/mightenyip/

neuronDetection). Future work will focus on applying existing models to detecting neurons

in real-time prior to patch clamp experiments. In addition, data augmentation methods and

the detection model will be optimized to further improve the detection accuracy. Moreover,

additional classes can be annotated to expand neuronal detection to other types of neurons.

Thus, paving the future for an object detection-based neural network capable of reasoning

the entire environment of an acute brain slice.
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A

B

Figure 4.2: (A) Examples of image enhancement techniques: binarize threshold, Gaussian
adaptive filter, contrast stretching, intensity-level slicing, histogram equalization, Gaussian
sharpening, contour, and Laplacian filtering. (B) top: Example of Canny edge detection for
original image, histogram equalization, and histogram equalization with bilateral filtering.
bottom: Subsequent cell segmentation prediction using Hough Circle Transform. Scale
bars: 10µm
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Figure 4.3: (a) Representative example of unaltered (top) and enhanced (bottom) images
of acute slice under DIC. Scale bar: 10µm (b) Representative plot of F1 score vs confi-
dence threshold, demonstrating peak in F1 score at a confidence threshold of 0.3. (c) left:
Relationship between precision and recall for the enhanced network tested on enhanced
and unaltered data set test images. right: Relationship between precision and recall for
the unaltered network tested on enhanced and unaltered data set test images. (d) Summary
of mean average precision of both networks for both enhanced and unaltered inputs (e)
Summary of F1 score of unaltered and enhanced networks for both enhanced and unaltered
inputs.
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Figure 4.4: (a) Convergence on training and validation loss with respect to number of
epochs. Black lines represent the unaltered trained model losses, and gray represents the
enhanced trained model losses. Solid lines represent training loss, and dashed lines repre-
sent validation loss. (b) The bar chart shows mean±SD comparison of the average accuracy
between the unaltered net and enhanced net on the unaltered data set test images. A stu-
dent’s t-test (α=0.05) acknowledges that the difference between the means is statistically
significant; t(36)=5.12, p<.001. (c) Box plot comparison of the confidence scores distri-
bution for unaltered and enhanced networks tested on the unaltered data set test images.
The notches represent the confidence interval around the median using a Gaussian-based
asymptotic approximation. The ends of the boxes are at the first and third quartiles while the
whiskers represent the minimum and maximum confidence scores. (d-e) Example of both
networks identifying neurons in a test image. left: initial prediction (red) of neurons. right:
bounding boxes for annotation (blue), correct prediction (true positive—green), incorrect
prediction (false positive—red), and undetected neurons (false negative—pink). Scale bar:
10 µm
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Figure 4.5: (a) Image of a network-identified neuron in patch clamp whole-cell configura-
tion. The blue bounding boxes indicate identified neurons. The numbers ranging from 0 to
1 indicate the network’s confidence that the box contains a neuron. The pipette recording
electrode is visible on the lower left quadrant resting on the leftmost of the three identified
neurons. Scale bar: 10 µm (b) Distribution of access resistance indicate that 8 out of 9
cells (89%) yielded high quality whole cell recordings. The white line indicates the median
(21.7), the box width indicates the interquartile range (9.6), and the whiskers indicate the
range of the data, excluding outliers. (c) Representative current clamp trace and (d) voltage
clamp trace from a neural network-identified neuron in whole-cell configuration.
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CHAPTER 5

COORDINATED MULTI-PIPETTE PATCH CLAMP FOR ENABLING HIGH

THROUGHPUT SYNAPTIC CONNECTIVITY STUDIES

5.1 Introduction

Patch clamp recording remains the gold-standard technique for high-quality electrophysio-

logical measurements of single cells in brain slices. We have previously developed a robotic

system, “the patcherBot,” capable of performing unattended, multi-hour patch clamp ex-

periments in brain slices, with a whole cell success rate of 50%. While this system is

broadly useful across neuroscience (i.e., drug screening, cell typing, etc.), the fields of

connectomics and synaptic physiology could benefit uniquely from scalable automation.

Patch clamp recordings of synaptically connected neurons, traditionally performed with

a single user operating multiple manipulators (up to 12) simultaneously, is an incredibly

challenging experimental method to master. While the patcherBot has been scaled to two

manipulators for high throughput patching in cultured cells and blind, in vivo patch clamp-

ing, the ability to use multiple manipulators and microscopy to identify connected clusters

of neurons in brain slices requires additional algorithm development. Specifically, careful

positioning and translation of the electrodes must be performed to maximize the probability

of patching synaptically connected neurons, and, simultaneously, avoid potential electrode

collisions.

The development of this premeditated manipulator route planning is an advancement

towards automated multi-manipulator patch clamping, and it allows for labs to conduct eas-

ier “mesoscale” studies on local brain circuits. Figure 5.1 shows the lack of multipatching

recordings once there are more than two manipulators involved. The goal of patch-walking

is to allow labs to enable higher number of manipulators to probe local brain circuits with
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much better efficiency. With the addition of cleaning, to the end of a patch clamp recording,

electrophysiologists will be able to prolong the use of one pipette rather than constantly re-

placing a used pipette. The strategy increases the efficiency for multipatching (Figure 5.2),

and its advantages were first shown by Peng et al [104]. The idea in Figure 5.2B is that

the addition of forward-thinking route planning along with pipette reuse can maximize the

number of potentially probed connections in an experiment. This method of ”walking”

(which we shall term as patch-walking) can enable a more efficient method than the tradi-

tional multipatching idea of “clumping” where electrophysiology experiments would come

in with all pipettes to patch and then subsequently remove them all after an attempt.

Dual-patching (two manipulators simultaneously for paired recordings) will validate

this novel ideology as a proof-of-concept [108]. Here, we define paired recordings as

successful simultaneous recordings from two potentially monosynaptically-connected neu-

rons. The multipatch algorithm utilizes a parallel performance to synchronize the pipettes.

While it may seem trivial to scale linearly from 1 to multiple automated pipettes, previous

robotic attempts never made each pipette truly independent from each other. The serial

approach to linearize the state machine of each manipulator such that functions pertaining

to manipulator-1 execute first, followed by functions pertaining to manipulator-2, and so

on is cumbersome and requires too much user input. With this architecture, it is unlikely to

achieve truly parallel performance– that is manipulator-1 and -2 will never be performing

any function concurrently. In addition, manipulators could not be in different stages of the

state machine, e.g. one cleaning and one patching. Finally, code organization and individ-

ual manipulator timing suffers because every manipulator-related function must be called

as many times as there are manipulators. To avoid this conundrum, each manipulator ap-

plies a mutex to reserve the camera and stage for calibration and navigation purposes. The

camera and stage can therefore only be reserved by one manipulator at a time. The indices

of cell locations are kept in a single queue that is accessed by the manipulator modules.

To avoid collisions of pipettes, each manipulator is given a set “path” of cells to patch in
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order to optimize the number of probed neurons for connections. Furthermore, the previ-

ously published version of the patcherBot for brain slices was a single manipulator-based

system [31]. Based on previous validation experiments at this scale, the patcherBot can

successfully patch 9 cells per hour completely unattended. One can imagine with more

manipulators, the yield of recorded cells would increase. Indeed, computational simula-

tions show that a robot with four manipulators has an expected throughput of 25 total cells

patched per hour [31].

5.1.1 Motivation

Multipatch setups increase the complexity and time of experiments, necessitating automa-

tion. Various groups were able to increase the number of simultaneous recordings [47,

104, 20, 30, 17], but the operation of multiple manipulators is challenging. To address

this, several approaches have been reported that automate the patch-clamp process, utiliz-

ing automated pressure control systems and algorithms for manipulator movements guided

by visual or electrical signals [26, 38, 31]. However, these setups generally are specific to

one manipulator while other papers from the Allen Institute and the Geiger lab use eight

or more manipulators, a feat currently used by only a few labs. Thus, there is a missing

opportunity on two to four manipulators, the mesoscale for multipatching, to enable larger

data sets to be gathered in a short amount of time for studying synaptic connectivity.

In Song et al., they discovered that synaptic connectivity in local cortical circuits carried

highly nonradom features [109]. Measurement of the euclidean distance of cell locations

for paired recordings compared to Perin et al.’s showed that the previously reported rate of

connectivity at p = 11.6% (931 connections out of 8,050 possible connections), was similar

to that reported for rat somatosensory cortex layers 5 and 2/3 , as well as those previously

reported for rat visual cortical layers 5 and 2/3 [20].

In order to maximize the mesoscale of multipatching, several optimization methods

must be considered. First, cleaning pipettes for immediate reuse increases the size of
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recorded neuron clusters and enables a more complete view of the microcircuit. The max-

imum number of simultaneously recorded neurons is highly limited by the spatial con-

straints imposed by the manipulators. Furthermore, the success of a whole-cell (WC)

recording depends on mechanical interference, deterioration of recording quality during

prolonged experimental time and tissue quality. These factors are aggravated when the

number of pipettes is increased. This technique has already been implemented for auto-

mated patch-clamp of multiple neurons in vivo or single neurons in vitro [110, 31]. Se-

quential recordings from multiple cells using the same pipette would also overcome the

limitation on maximum cluster size given by the number of manipulators in use. This will

provide a more complete view of the microcircuit enabling the analysis of more complex

network motifs and higher degree distributions [20, 109]. In order for sequential record-

ings from multiple cells to succeed however, a forward-thinking route-planning algorithm

must be developed in order to maximize the probability of connection between two probed

neurons.

Thus, we introduce a fully automated, user-free in vitro multipatch approach with a

pipette route-planning system to ”walk” across a brain slice and record up to 10 neurons.

Here, we show that this approach further increases the rate of potential neurons probed,

decreases experimental time and enables sequential patching of additional neurons.

5.2 Methods

5.2.1 Computational multipatching modeling

A series of simulations, modeling, and algorithm development were conducted to showcase

the advantage to using the full automation of the patcherBot towards coordinated, multi-

pipette patch clamping (“multipatching”). The computational model was built in MATLAB

(Mathworks) and integrated into the patcherBot software in LabView.

For the route planning and collision avoidance algorithm (”patch-walking”), we as-

sumed that an automated, multipatching system can be operated and unattended for multi-
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Figure 5.1: Multipatching recordings are desirable but difficult to perform. A literature
review (done in 2020, total of 75 papers) of papers that performed multipatching in vitro
in mice and rats were analyzed to determine the average number of measured connections.
The bar chart shows the number of papers that used X manipulators for a patch clamp con-
nectivity experiment. The blue part of the bar chart shows how many of the papers reported
their probability of connection yield. This showcases the low efficiency for probing con-
nectivity amongst a local brain circuit. The line graph shows the probability of connections
reported for the number of manipulators used.

ple hours. Using experimental data gathered from the single-manipulator PatcherBot [31]

and literature data on connectivity rates [20], we built a computational model to simulate

how a multipatching robot could sample a greater number of possible connections in a

single experiment (Figure 5.2A). The methodology of clumping vs. patch-walking was

also incorporated to highlight the efficiency in using the patch-walking algorithm to pro-

file connections in brain slice (Figure 5.2C). Lastly, the patch-walking algorithm shows a

unique route-planning pathway based loosely on the Monte Carlo Tree Search algorithm

(Figure 5.2D).

For the Monte Carlo Tree Search Monte Carlo Tree Search (MCTS) algorithm, nodes
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Figure 5.2: a. Representation of a computational simulation modeling the connection of
neurons with each other with respect to their clusters in a brain slice. Further, an example
of the computational model showing multiple pipettes patching different cells. b. An ar-
gument for patch-walking rather than clumping as a desirable multipatching algorithm in
order to optimize efficiency of probing connections. This a 4-manipulator example showing
the increased number of probed connections in green squares outside the black bounding
boxes. c. Modeling throughput simulation of how patch-walking increases the number of
maximum probed connections as a function of number of manipulators (4-minute patch
attempts per manipulator). The 2-hour and 8-hour time representations show the time-cost
generally for setting up a large number of manipulators.
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(or in this case, neurons), are the building blocks of the search tree. These nodes are formed

based on the outcome of a number of simulations. The process of the Monte Carlo Tree

Search can be broken down into four distinct steps, selection, expansion, simulation and

backpropagation. Selection begins the initial strategy to traverse from the root node down

the tree using a specific strategy. Here, we used (1) neuron location, (2) locations of other

pipettes, and (3) maximum distance between two probed cells as the primary criteria for

node selection. During tree traversal, a node is selected based on the scoring of these

parameters to return the maximum value [111] . For the neuron selection criteria, we cate-

gorized the bounding box of neurons to a 200 x 200 µm Field of View (FOV) window. We

then prioritized for route-planning to avoid collisions between pipettes such that there was

a 10 µm safety buffer around the modeled pipette. The base location of each pipette was

standardized to the safe space calibrated within the patcherBot software for each manipu-

lator. Lastly, the maximum distance allowed between two patched neurons was less than

200 µm in order to have at least a 10% probability of connection according to Perin et al.

[20].

The order for patching neurons was then updated for the maximum or best score at-

tributed to a successful ”walk” across the brain slice with specified number of manipula-

tors. Using a prescribed set of neurons, we validated the method of the model within the

patcherBot software seen in Figure 5.3. We also validated, for a given random distribution

of cells within a large field of view, the patch-walking algorithm would avoid collisions

(Figure 5.4).

5.2.2 Multipatching patcherBot

Hardware

We ran multipatching, automated patch clamp experiments using a standard electrophysi-

ology rig with two PatchStar micromanipulators. Samples (brain slices) were imaged using

a 40X objective (LUMPLFL40XW/IR, NA 0.8, Olympus) on a motorized focus drive, il-
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A B

Figure 5.3: GUIs made to theoretically demonstrate the route-planning of patch-walking. a.
Representative patch-walking sequence of cells represented in a 2D plane. b. Representa-
tive patch-walking validation in a 3D plane highlighted by the position of the manipulators.

Figure 5.4: Representative route-planning path for 4 manipulators in a large (> 200 µm)
field of view . Axes are in steps which are a 10:1 ratio to µm. The cyan dots represent cells.
The line getting increasingly blue represents the path of manipulator-1. The line getting
increasingly red represents the path of manipulator-2. The line getting increasingly gray
represents the path of manipulator-3. The line getting increasingly green presents the path
of manipulator-4.
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luminated under DIC with an infrared light-emitting diode (780 nm), and captured with a

Rolera Bolt camera (QImaging). We used a peristaltic pump (120S/DV, Watson-Marlow)

to perfuse the brain slices with aCSF solution. We also a custom machined brain slice

sample holder with a smaller side chamber for cleaning solution. We followed the cleaning

protocol as suggested by [60], however we did not include rinsing in the cleaning protocol

because recent literature found that there is no impediment to the whole cell yield or quality

of recording [32, 104].

Electrode pressure was controlled using a custom pipette pressure controller enabled

up to four-channels. For each pipette, pressure was controlled by a ±10 psi regulator

(QPV1TBNEEN10P10PSGAXL, ProportionAir) using an analog (0-10 V) control signal.

The control signal for each regulator was generated by a microcontroller (Arduino Due)

via a digital-to-analog converter (MAX539, Maxim Integrated). In order to minimize valve

switching to efficiently scale up the patcherBot to multiple manipulators and pipette pres-

sure control, a custom PCB circuit board was developed to control up to a maximum of

4 manipulators. Individual pressure regulators for each pipette were necessary to ensure

that different pressures could be maintained on each pipette, e.g. if one pipette is forming

a seal (atmospheric or negative pressure), and another is approaching a neuron (positive

pressure). The custom pressure controller regulates house-air line to deliver -500 to +700

mbar using an inline venturi tube (SMC) and solenoid valve (Parker Hannifin) for rapid

pressure switching [31, 26, 112].

For real-time electrophsyiology feedback and collection, we used the Multiclamp 700B

amplifier (Molecular Devices), and cDAQ-9263/9201 and USB-6221 OEM data acquisition

boards (National Instruments) to collect recordings. In addition, we used the Axon Digidata

1550B during paired recordings. A unique DAQ was used for each manipulator in order to

simultaneously acquire different signals from each pipette. This is particularly important

for asynchronous and independent pipette control.
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Figure 5.5: a. Multi-manipulator patcherBot system. b. Specific mouse brain regions of
patching where in the primary visual and somatosensory cortex. c. Software overview of
the patcherBot LabView grpahical user interface. d. Monte Carlo Tree Search decision tree
example for a pipette. e. Matrix representation for patch-walking efficiency upgrade with
2 manipulators (dual-patching).

Software

Custom LabVIEW code (National Instruments) integrating manipulators (electrode and mi-

croscope), camera view of the microscope stage, and pressure control box was implemented

to control the rig and enable automated experimentation based off the patcherBot software

developed by Kolb et al. 2019. The Graphical User Interface (GUI) was designed with tabs

to help the user keep track of different parameters with the main module displaying the crit-

ical information: DIC imaging, pressure control, manipulator position, electrophysiology

data, real-time resistance feedback, and current state machine of the automated patcherBot.

For the demonstration of patch-walking with multiple pipettes, we focused on using

2 pipettes to highlight the functionality of the idea and method. In order for independent

pipette control to continually probe new neurons, each manipulator was required to function

asynchronously of other manipulators. This included unique resistance feedback during the

patch clamping protocol, a re-entrant sub-module for the state machine of each pipette (as
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described in Kolb et al. [31], and independent calibrations to ensure the positioning errors

were mitigated.

The patch-walking algorithm was implemented within the “pick cell” state of the patcher-

Bot state machine. The “pick cell” state ensures that each manipulator is assigned to the

cell closest to its home position from an array of un-patched cell indices or in this scenario,

based on the MCTS-based patch-walking algorithm which assigned a score to each neuron

indicating its overall suitability for the route path. The second addition to the dual patch

algorithm was the “microscope reservation” feature which ensured that each manipulator

could “reserve” the microscope stage and imaging system for the pick cell, calibration,

pipette descent, and cell approach states. It was essential that each manipulator had com-

plete control over the microscope during these steps since they rely on camera output. If

a manipulator was ready for the “pick cell” stage, but the microscope was reserved by the

other manipulator, it would wait until the microscope was unreserved.

5.2.3 Brain slice preparation

All animal procedures were in accordance with the US National Institutes of Health Guide

for the Care and Use of Laboratory Animals and were approved by the Institutional Animal

Care and Use Committee at the Georgia Institute of Technology. For the brain slice exper-

iments, male mice (C57BL/6N, P19–P36, Charles River) were anesthetized with isofluo-

rane, and the brain was quickly removed. Coronal sections (300 µm thick) were then sliced

on a vibratome (Leica Biosystems VT1200S) while the brain was submerged in ice-cold

sucrose solution containing (in mM) 40 NaCl, 4 KCl, 1.25 NaH2PO4·H2O, 7 MgCl2, 25

NaHCO3, 10 D-Gluocse, 0.5 CaCl2·2H2O, 150 Sucrose (pH 7.3–7.4, 300–310 mOsm).

The slices were incubated at 37 °C for 1 h in neuronal artificial cerebro-spinal fluid (aCSF)

consisting of (in mM) 124 NaCl, 2.5 KCl, 1.25 NaH2PO4·H2O, 1.3 MgCl2, 26 NaHCO3,

10 D-Gluocse, 2 CaCl2·2H2O, 1 L-Ascorbate·H2O (pH 7.3–7.4, 290–300 mOsm). Prior

to recording, the slices were maintained at room temperature for at least 15min (22 °C–25
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°C). The sucrose solution and ACSF were bubbled with 95% O2/5% CO2. Recordings

were performed in mouse primary visual area and somatosensory cortex.

5.2.4 Patch-clamp recording

Borosilicate pipettes were pulled on the day of the experiment using a horizontal puller

(P-1000, Sutter Instruments) to a resistance of 4–6 MΩ. The intracellular solution was

composed of (in mM) 135 K-Gluconate, 10 HEPES, 4 KCl, 1 EGTA, 0.3 Na-GTP, 4 Mg-

ATP, 10 Na2-phosphocreatine (pH: 7.2–7.3, 290–300 mOsm). Recordings were performed

at room temperature with constant superfusion of oxygenated neuronal ACSF. Pipette pres-

sure during patch clamp steps was digitally controlled and pipettes were cleaned according

to Kolb et al [60, 31].

5.2.5 Dual-patch experimental validation

During the patch clamping experiments, the user first identified all viable neurons within a

200 x 200 µm FOV of the sample. The algorithm then evaluated each neuron based on the

patch-walking criteria described above. To evaluate the dual-patching and patch-walking

performance, the user chose 4-10 neurons. An attempt was considered successful upon

the successful completion of the break-in state. After an automated whole-cell recording

protocol, the software switched over to Clampex (Molecular Devices, San Jose, CA, USA),

a electrophysiology recording software, for connectivity studies. After successful attempts

by both pipettes, paired recordings were conducted to test for connectivity.

After the both manipulators conducted their first attempts, the algorithm re-evaluated

the remaining neurons in the un-patched cell index and updated the next cell to be patched

for that specific manipulator. After the first successful paired recording, the manipulator

that held its cell under whole-cell configuration the longest would then release the cell,

clean the pipette, and come back for another patch attempt with the next, updated cell to

patch. The algorithm then repeated the process of selecting until all viable neurons had
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Figure 5.6: a. Picture of the custom pressure control box. b. Connection probability as a
function of intersomatic distance between neurons from Perin et al. [20]. c. Representative
3D-example of throughput for dual-patching explicitly not for connectivity. The cells in
green indicate successful patches while red indicates failed patches. Representative current
clamp traces are included for the successfully patched cells.

been patched.

To validate the performance of automated dual-patching as a proof-of-concept, we

wanted to benchmark the efficiency of our patch-walking algorithm to that of the Allen

Institute [46]. Similar to Peng et al., we wanted to benchmark the utility of patch-walking

in a connectivity matrix [104]. Furthermore, general quantitative cell statistics for quality

of recording will be conducted.

5.2.6 Statistics

The success rate of the dual-patcherBot was considered as a function of (1) number of

paired recordings per experiment per pipette, (2) time to paired recordings, (3) distance be-
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tween neurons for paired recordings, and (4) binomial probability of connection,. Standard

whole-cell electrophysiology cell quality statistics were also conducted for access resis-

tance, input resistance, capacitance, tau, and resting membrane potential. Analyses and

statistics were computed using Python. Data are presented as mean ± standard deviation

unless otherwise stated.

5.3 Results

( For a demonstration of the first ever forward-thinking multipatching robot using a coordi-

nated route plan for automatic, sequential recordings in a brain slice. We aimed to show a

representative dataset for dual-patching throughput of paired recordings with the ability to

”walk” through a slice and avoid pipette collisions. As a first validation step, we conducted

a short dual-patch throughput experiment for two pipettes patching in a brain slice without

testing for connectivity or any route-planning Figure 5.6C. We achieved whole-cell suc-

cess rates of 45.5% (n=15) with manipulator-1 achieving 44.4% (n=8) and manipulator-2

achieving 46.7% (n=7). This is similar to success rates for manual patching as well as

previously reported automated patch clamp robots (43%-51% for Kolb et al.) [31].

For dual-patch connectivity recordings, we then implemented a simultaneous record-

ing state to test for connections between paired recordings. To demonstrate the utility of

the coordinated, dual-patching robot, we conducted a pilot study over 6 experiments. We

determined several stages– neuron-hunting, gigasealing, and whole-cell success– as stages

during the patching process to categorize for throughput success. Out of 122 total attempts

for both pipettes, we had 116 successful neuron-hunts (95.1%), 64 successful gigaseals

(52.5%), and 64 successful whole-cells (52.5%). This was also in line with previously

reported automated patch clamp work such as Kolb et al. (mentioned above), Wu et al.

(43.2%), and Koos et al. (63.6% for rat, 37% for human) [45, 38]. In addition, our success

rates fall within the highly variant success range of manual users (30-80%) on DIC-based

patch clamp systems [113].
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Figure 5.7: a. Representative field of view for dual-patching with the pipettes in view
(green) and neurons in the un-patched cell index (red). Scale bar: 10 µm. b. Representative
current clamp traces of both cells prior to connectivity testing. c. Histograms of standard-
ized quality control whole-cell electrophysiology statistics along with time to gigaseal. d.
Histograms of time to simultaneous, paired recordings and the distance between neurons
during paired recordings.
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In Figure 5.7A, we show a representative example of both pipettes in the imaging cam-

era’s field of view as well as neurons of interest that are being patched or in the un-patched

cell index. Figure 5.7B then shows example current clamp traces in response to current

pulses applied during whole-cell recording prior to the simultaneous recording state. In-

jected current pulses were 3 sec-long pulses from -20pA to +280 pA in 20 pA steps with a

2 sec, -20 pA hyperpolarizing step 500 ms prior. Figure 5.7C shows a histogram of stan-

dard quality cell statistics of whole-cell recordings. The average input resistance for these

recordings were 286.7 ± 207.5 MΩ, the average access resistance for these recordings

were 34.2 ± 16.7 MΩ, and average resting membrane potential was -63.8 ± 17.4 mV. In

addition, the time to gigaseal was also monitored with an average of 80.6 ± 43.4 sec.

Towards studying connectivity with paired recordings, we also tracked the time to si-

multaneous recordings between two pipettes as well as the distance between two neurons.

This was helpful in two ways, to validate that the patch-walking algorithm did not pass

the maximum distance requirement during route-planning and the utility of this robot to

quickly and sequentially search for connections in a brain slice. The histograms in Fig-

ure 5.7D shows the time to simultaneous paired recording with an average of 11.6 ± 6.83

sec, and the average distance between two neurons for screened for connection to be 93.7

± 0.170 µm, well under the MCTS threshold in the patch-walking algorithm.

For the final validation step of the patch-walking, dual-patching robot, we set out to

demonstrate a connectivity matrix similar to those done by previous labs such as Peng et al.

and the Allen Institute for Brain Science [104, 114]. From the 64 whole-cell recordings we

gathered from the dual-patcherBot, we report a yield of 38 total simultaneous recordings.

Of those 38 recordings, 23 paired recordings (i.e. 46 probed connections) passed quality

control checks and were used to validate the efficiency of the patch-walking algorithm.

Given the difficult nature of patching in brain slice, out of the 64 WCs, only 56 had a

potential to be paired with a second neuron for connection screening. From Equation 5.1

and Equation 5.2, we see the additional connections screened with the effect of patch-
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Figure 5.8: a. Matrix of voltage and current traces from 8 neurons in one acute brain
slice recorded using the patch-walking algorithm for the dual-patcherBot. Left column
shows the firing pattern of the recorded neurons. Cells are numbered such that the first
number represents the cell and the second number represents the manipulator. In the first
session, two neurons were patched simultaneously (cells numbered 1.1 and 2.2). Traces
recorded from one cell are shown in a row with the same color. Five action potentials were
elicited in each neuron consecutively (diagonal of the matrix). The postsynaptic responses
of the other neurons are aligned in the same column. After recording of the first pair
of neurons, the pipette with the earlier whole-cell was cleaned and an additional neuron
based on the patch-walking algorithm was patched and recorded with the same stimulation
protocol (2.2 and 3.1). After the second recording session, the second pipette was sent
to clean and a new cell was patched while manipulator-1 on cell 3.1 was not removed.
This allowed screening of additional connections due to the pipettes ”walking” across the
slice rather than just only a single paired recording. Scale bars: Horizontal 1.5 s for firing
pattern, 150 ms for connection screening. Vertical 40 mV for action potentials, 50 pA
for postsynaptic traces. b. (i) Patch-walking scheme of all neurons from the experiment
matrix in (a). The dashed arrows represent the patch-walking route plan for manipulator-
1 (red) and -2 (blue). The curved lines between neurons represent probed connections
as color-coded in the matrix in (a). (ii) Second example of patch-walking scheme for a
different experiment. The clumping method was initiated for the first paired recording
session (1.1 and 2.2) before patch-walking was initiated. c. (i) Schematic representation
for connection screening with the pre-synaptic cell in red and post-synaptic cell in blue.
The connectivity stimulus to screen for connections is shown below with a train of 5 action
potentials elicited at 20 Hz. (ii) Representative connection between two neurons from the
connectivity stimulus. (iii) Representative connection between two neurons during steady-
state, spontaneous recordings.
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walking. Without patch-walking, we would have only been able to screen a maximum

of 28 paired recordings. Empirically, we also note from quality metrics, we would have

only been able to probe 12 paired recordings. Thus, utilizing the patch-walking algorithm

highlights immediate dividends of its efficiency increase.

possible connectionsclumping = nc ∗ (m2 −m), (5.1)

possible connectionspatch−walking = (m2 −m) + 2(npw − 1)(m− 1),

for npw >> nc,

(5.2)

where nc is the number of cells, npw is the number of cells in a patch-walking experiment,

and m is the number of manipulators.

In Figure 5.8, we showcase a connectivity matrix as well as example cases of connec-

tions found during the 6 experiments. The matrix in Figure 5.8A shows both voltage and

current traces from 8 neurons in one acute brain slice recorded using the patch-walking

algorithm for the dual-patcherBot. The left column shows the firing pattern of the recorded

neurons. Cells are numbered such that the first number represents the cell and the second

number represents the manipulator. In the first attempt, two neurons were patched simul-

taneously (cells numbered 1.1 and 2.2). Traces recorded from one cell are shown in a row

with the same color. Five action potentials were elicited at 20 Hz in each neuron consecu-

tively (diagonal of the matrix). The postsynaptic responses of the other neurons are aligned

in the same column. After recording of the first pair of neurons, the pipette with the earlier

whole-cell was cleaned and an additional neuron based on the patch-walking algorithm was

patched and recorded with the same stimulation protocol (2.2 and 3.1). After the second

recording session, the second pipette was sent to clean and a new cell was patched while

manipulator-1 on cell 3.1 was not removed. This allowed screening of additional connec-

tions due to the pipettes ”walking” across the slice rather than just only a single paired

recording. In Figure 5.8B(i), the patch-walking route is shown for the experiment matrix.
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The dashed arrows represent the patch-walking route plan for manipulator-1 (red) and -2

(blue). The curved lines between neurons represent probed connections as color-coded in

the matrix. With Figure 5.8B(ii), it was another patch-walking route for a different ex-

periment (matrix not shown) which includes an initial method of clumping such that the

there was no immediate walking after the first paired recording attempt. Patch-walking

was initiated for the remaining 6 neurons to showcase the versatility of the patch-walking

algorithm.

In Figure 5.8C, we see in a schematic representation for connection screening with

the pre-synaptic cell in red and post-synaptic cell in blue. In the following panels (ii)

and (iii), we show traces that highlight connections found between two neurons from the

connectivity stimulus recording as well as a connection during steady-state, spontaneous

recordings. Stimulus spike trains were able to produce excitatory postsynaptic currents

(EPSCs) and inhibitory postsynaptic currents (IPSCs).

To validate the performance of automated dual-patching as a proof-of-concept, we

benchmarked the efficiency of our patch-walking algorithm to that of the Allen Institute

[46]. According to their results, the Allen Institute probed 20,949 possible connections

over 1,715 experiments with 8 manipulators for an efficiency rate of 1.5 possible con-

nections per experiment per pipette. While a small sample size, here we show that the

patch-walking dual-patcherBot was able to achieve 46 possible connections over 6 experi-

ments with 2 manipulators for an efficiency rate of 3.8 possible connections per experiment

per pipette. A two-fold improvement for labs unable to or uninterested in maximizing the

number of manipulators on their rig.

In the literature review (Figure 5.1) done for multipatching papers, 2-manipulator pa-

pers that reported their connection yield had on average a 11.1% ± 11.5% probability of

connection. The maximum probability of connection yield reported was 38.4% which ex-

plains that there are many low values and a tail off to the right (i.e. strong right skewness

and a peak near the minimum). To compare our patch-walking, dual-patching robot to
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reported results, we first used Perin et al.’s model (Figure 5.6B) for probability of inter-

somatic connectivity as a function of distance [20]. From the average distance between

two probed neurons we determined a connection probability, P, of 17.0% between probed

neurons. Utilizing Equation 5.3, which describes the likelihood of at least one connection

being found within our 23 paired recordings, we see that:

P (at least 1 connection) = (1− P (probability of no connection based on distance))n,

(5.3)

which describes the probability of at least one connection occurring based on the distance

between two probed neurons and n is the number of trials.

Given the probability connection, P, the probability of us finding at least one connec-

tion was 98.6%. With our connectivity recordings, we were able to find 2 connections

amongst the 23 paired recordings. While our 4.35% success rate of finding connections is

relatively low, it still falls within the standard deviation range for other reported yield of

dual-patching papers. Furthermore, we also look at the binomial distribution (probability

density function) of exactly 0, 1, 2...etc. connections being found given our empirical data.

Figure 5.6B shows the distribution from Equation 5.4 stated below:

(
n

r

)
(P r)(1− P )n−r, (5.4)

where n is the number of trials or connections probed, r is the number of occurrences

expected to be a connection, and P is the probability from Equation 5.3. This equation

describes the binomial distribution of exactly ’r’ number of connections occurring from the

dual-patcherBot paired recordings. For the lower distribution, the chance to find exactly 0,

1, or 2 connections is a combined 22.6% which is close to finding exactly 3 (21.0%) and

exactly 4 (21.4%) connections.
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5.4 Discussion

The results and methods presented here facilitate previously significant technical limita-

tions for probing synaptic connections on the whole-cell electrophysiological level. This

optimized method of patch-walking enables increased efficiency and is widely applicable

to not just heroic efforts to atlas the brain but also to study small-scale changes between

pairs of neurons for neurological diseases.

Previously, local circuit connectomics was inefficient and deemed only possible for

labs with massive electrophysiology resources because synaptic physiology studies require

simultaneous pipette patch clamping with up to 12 manipulators. With the fully automated

dual-patcherBot and the inclusion of a forward-thinking, route optimization plan, we enable

a pivotal increase in the throughput and efficiency for probing connections for research labs

that do not have the resources or experimental plans for a large number of manipulators.

Towards the goal of answering questions regarding the role of synaptic connectivity in

physiological networks and for providing “ground truth” data to inform higher throughput

experimental and computational work, the patch-walking, dual-patching robot can play an

important role in the broader experimental tool-set available to neuroscientists interested in

the brain function or neurological diseases. Other alternatives to utilize the patch-walking

algorithm could include the use of channelrhodopsin-assisted circuit mapping [115] to en-

able larger circuit mapping with multiple patch electrodes. In addition, patch-walking could

be used for fluorescent-targeted cells where one pipette could target a specific subset of cells

while the other pipette would probe non-targeted cells. A third alternative could be that one

pipette patches a deep cell and stays patched onto it while pipette 2 continues to automat-

ically patch other cells and search for connections in that manner. From these alternative

uses of patch-walking, future work of automated multipatching could include optimization

such that the first pipette patches the deepest cell first before the other pipettes patch cells

above. Experiments could be done to probe specific layer to layer connections as well.
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During validation experiments in brain slice, some pitfalls occurred with stability of the

pipettes as some manipulators move while others are whole-cell recording from neurons.

Steps were taken to mitigate this issue by stiffening the stage of the electrophysiology rig,

dampening the manipulators, and slower movement of the manipulators.

Based on this promising pilot representation of patch-walking, we foresee that the

patch-walking algorithm will enable multiple-pipette patch-clamp electrophysiology more

accessible to a wider range of laboratories that usually conduct simultaneous recordings

with a lesser number of manipulators. Further, the automated, dual-patching robot could

also be altered to include users in the loop if they want to have control over certain aspects

of the patching process or enable experienced patchers with digital pressure control. Even

the best human electrophysiologists can only control one manipulator at a time, but the

dual-patcherBot can control multiple manipulators, pressure lines, and command signals

independently. The ability to patch clamp multiple cells simultaneously using the dual-

patcherBot provides throughput improvements over manual patching, especially for those

looking to utilize paired recordings in their experiments [116, 117, 118, 119].
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CHAPTER 6

CONCLUSION

The study of the brain seems to be the final frontier of the human body to understand

due to the immense challenges that still remain in the field. While a scientifically fruit-

ful discipline, there are drastic deficiencies in our ability to systematically and efficiently

study it whether it be on the molecular level or cross-regionally. The thesis presented

here addresses a particularly challenging field of electrophysiology that aims to study as

close to ground-truth data about an individual neuron. As the gold-standard technique for

high spatiotemporal resolution study of neurons, patch clamping provides access to multi-

dimensional data sets of electrophysiology, morphology, connectivity, plasticity, etc. In or-

der to enhance experimental studies by labs around the world, the automated patch-clamp

recording technology discussed here is particularly suited to address three major challenges

in neuroscience discussed below.

The first challenge is high throughput pharmacological screening of compounds. Pre-

viously, screening multi-concentration point curves would require herculean efforts where

a set of 100 data points would take several weeks. With the introduction of the patcher-

Bot into the field of pharmacology, the reduction in human time requirement (13 hours of

time to collect the same 100 data points) allows for significantly larger data sets collected

in a shorter span of time. The inclusion of a millisecond fluid exchange handling with

the robotic system along with a repeatable, precise physical manipulation (utility patent

filed in April 2022) for solution exchange quickly improves the efficiency of ligand-gated

ionotropic receptor experiments.

The second challenge is molecular screening for neuronal activity monitoring. Ge-

netically encoded calcium indicators (GECIs) allow for simultaneous activity imaging of

thousands, to, potentially, millions of neurons [69]. Similarly, genetically encoded voltage
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indicators (GEVIs) are promising due to their ability for direct voltage transduction [81].

However, to date, no fluorescent sensor has been discovered that has single-spike resolu-

tion, fast response time and low photobleaching rate. However, the patcherBot showed

its usefulness by enabling the discovery of Voltron2–a step in the right direction, and its

effectiveness could continue towards other screening methods such as those considering

directed evolution.

Integrating the patcherBot into an image- and electrophysiology-based multidimen-

sional directed evolution platform could screen for new types of optogenetic tools. Highly

innovative new tools could be discovered such as an infrared neural activator, a neural ac-

tivator that cannot be driven by blue light, a two-photon neural silencing toolbox, a three-

photon neural control suite, and an optimized light-gated potassium conductance. Screen-

ing of entire libraries of opsin variants with no human interaction, first through imaging,

and then with select mutants further characterized with the patcherBot could have similar

effects to that of the factory-like assembly for brain connectivity and function.

The third challenge is creating a single-cell map of neurons and connections in many

parts of the brain [120]. Dysfunctions in cell-type specific connectivity are implicated in

diseases such as autism [15], Alzheimer’s disease [52], and others. Discovering princi-

ples of inter-neuronal connectivity could begin to explain brain function (either in local

circuitry or cross-regionally) as well as possible interventions for diseases. To do this, au-

tomated patch-clamp recording could become a platform or benchtop reader in an assembly

line where technicians would set up slices to feed into the patcherBot which in turn could

patch cells with minimal human supervision. Indeed, with the autonomous nature of the

patcherBot, a single technician could operate multiple rigs at a time, increasing the exper-

imental data sets collected. Standardizing data collection for electrophysiology is crucial

for reducing variability for reproducibility and enabling large-scale studies.
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6.1 Major Contributions

The major contributions of this work include algorithm development, as well as develop-

ment and validation of techniques that are shown to be widely applicable in the neuro-

science community. In this work, I:

• Validated the patcherBot, an integration of image-guided Autopatching and machine

vision. The software package enables fully unattended, walk-away automation for

patch clamp experiments.

• Enabled the extension of pipette cleaning to over 100 reuses for patch-clamp pipettes.

• Built and validated the first system to perform sequential patch clamp recordings

automatically for pharmacological screening. Tested the system in adherent HEK-

293 cells.

• Built and validated the first system to perfrom sequential patch clamp recordings

automatically for genetically encoded voltage indicator screening. Tested the system

in adherent HEK-293 cells and neuronal cultures.

• Designed and pioneered a pilot study for the first system to perform sequential patch

clamp recordings automatically for opsin screening. Tested the system in transfected

HEK-293 cells.

• Leveraged machine learning techniques to enable the first, fastest, and real-time au-

tomated neuron detection in brain slice under IR-DIC.

• Designed and validated the first automated, multi-pipette patch clamping robot to

sequentially profile inter-neuronal connectivity using an algorithm for coordinated

route-planning to enable high-throughput synaptic connectivity studies.
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6.2 Future Work

The patcherBot, in its integration into many fields of neuroscience, has expanded its func-

tionality towards pharmacology and opsin sceeening to machine learning developments and

local brain circuit electrophysiology. Future work for the patcherBot can undergo several

other hardware and software revisions to expand functionality.

The pipette cleaning technique, while shown to be transformative, can be improved and

applied towards better pipettes. The effective cleaning and reuse (> 20 cleans) of pipettes

has enabled higher quality pipettes, such as quartz, to be used. Unlike borosciliate, quartz

has a lower dielectric effect and enables low-noise recordings which is especially important

for very demanding recordings of single-ion channel [1].

While I have extended the capabilities of automated patch clamping towards study-

ing local synaptic connectivity and screening for multiple-types of assays, the automated

method can be further enhanced and modified to enable the the throughput of various other

experiments.

First, the automated patch clamping software could be augmented to include the ad-

ditional capability to perform patchSeq [121], enabling the collection of gene expression

information from single cells. This would require hardware and software modifications

such that the chambers of the sample dish would be RNAse-free and programmed so that

manipulators deposit the cell contents into designated wells. Cross-contamination would

be of great concern and would require an additional cleaning step for genomic removal.

Second, the software could be coupled with optogenetics [44] to perform circuit discov-

ery experiments similar to Channelrodopsin-2-assisted circuit mapping (CRACM) [115].

In such an experiment, a pipette would patch clamp a cell and then targeted presynaptic

cells would be optogenetically stimulated to produce post-synaptic potentials (PSPs) on

neighboring cells. The cell that produces PSPs on the patched cell would be patched with

another pipette, and the process repeated again, until a connected network is traced.
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Third, the robot could be applied specifically towards a neurological disease study.

Specific neuronal types such as PV-int are highly vulnerable to stressors and have been

implicated in many psychiatric diseases like autism and Alzheimer’s disease [50]. The

deployment of the patch-walking algorithm to profile local circuitry of a region of the

mouse brain or for studying the effects of PV-int stressors may lead to understanding the

pathologies towards Alzheimer’s disease.
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APPENDIX A

PHARMABOT MANUAL

A.1 patcherBotPharma - Manual and SOP

A.1.1 Important Considerations

The following protocol to set up a patcherBotPharma robot is intended for an inverted mi-

croscope. A major component that should be mentioned is the digital pressure control box.

This is important in conducting the patch clamp experimental steps and reuse of the pipette

after each attempt. The majority of the components (e.g. microscope, vibration isolation

table, computer, faraday cage, etc.) are generally widely available in a patch clamp elec-

trophysiology lab. Particular components are also required (manipulators) due to their ease

in communication with the Labview software. Not all versions of the available manipula-

tors, amplifiers, values, etc are coded in the present patcherBotPharma code but most can be

programmed into LabView.

During patcherBotPharma operation, please note that while automated, specific items

should be monitored (noted in step E.3).

Components

Microscope: Axiovert 200 Vibration Isolation Table Faraday Cage Computer: Sug-

gested Minimum Requirements: 32 GB RAM, i7-8700K CPU @3.70GHz, Additional

GPU Amplifier: Multiclamp 700B Motorized Stage: Scientifica Motorized Stage

Setting up the patcherBot Manufacture cleaning dish according to microscope stage di-

mensions in-house or using an on-demand production service (e.g., Protolabs, Neuromatic
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Figure A.1: Cartoon Representation of the patcherBotPharma

Figure A.2: Camera: QImaging Retiga Electro
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Figure A.3: Z-focus Module

Figure A.4: Elevated Microscope Platform. This is a custom milled sheet of aluminum.
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Figure A.5: Bath Chamber. Note: .STL files for the depicted chamber is posted on Github.

Figure A.6: Electrode Manipulator.

Figure A.7: Solution manifold.
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Figure A.8: Piezoelectric translator.

Figure A.9: Peristaltic pump.

Figure A.10: Solution valves.

115



Figure A.11: DAQ.

Figure A.12: Pressure Control Box (custom version). A comparable pressure control box
can be built from scratch according to plans presented by [26]. Schematics, instructions,
and parts lists are also available for download on autopatcher.org. Alternatively, a compat-
ible pressure control box can be purchased directly from Neuromatic Devices (neuromat-
icdevices.com)

Devices). Note: .STL files for the depicted chamber is posted on Github.

Install pressure control box on existing patch clamp electrophysiology rig. Download

and install software from Github. Perform initial software setup.The QImaging Retiga

Electro requires additional registration (http://www.rcubedsw.com/sitk-with-labview.html).

All components software and drivers need to be installed. Register manipulator and pres-

sure control box according to manufacturer and COM port.

Panel Interface Components

Figure A.13: Main VI Left Panel.
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Here listed is an overview of most of the options and setting available to enable human

assisted and fully automated patcherBotPharma operation.

Camera View This is the live view of the Camera, Setting can be found on the right

panel Display Tab.

Current Experiment Counts This shows the number of cells selected as well as the

number of attempts (Att). Out of those attempts, it also shows the number of gigaseals

(GS) and whole cells (WC) achieved as well as the number of cells remaining.

Project Details Designated organization of metadata for the current experiment. This

information is written to the file named “pharmaBotLedgerSeeds.txt” in each experiment

folder.

Valve Control Controls available for assigning the valve of choice for experiment. These

are controllable while setting up the patcherBotPharma. Set the dial to the valve of choice,

then click go for the signal to be sent. The lamp will go on while moving and the indicator

will then update after the valve terminates its motion. Note: the valve control does not ping

the valve regularly, meaning that if you manually control the valve, the Labview code will

not know the present selected valve.

Current Positions (m) Current position of the manipulator and stage (in microns). This

is a relative number calibrated to the zero designated at the beginning of the calibration

stage.

Current Positions (counts) Same as e) except the position is denoted in “counts” where

10 counts = 1 m.

Electrode Resistance Resistance of the pipette electrode.
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Saved Electrode Resistance Saved resistance of the pipette electrode prior to an exper-

iment. Click the lamp next to the indicator at after installing a new pipette, this saves the

naı̈ve resistance. After patching takes place, the in-bath resistance can be compared as an

indication if the pipette cleaning process was successful.

Experiment Set-up and Control Tabs Setup tabs to help with experiment design and

robot calibration. This where most of the user interaction occurs during set-up.

Main VI Right Panel

Current Mouse Control Indicates the role of a left mouse click on the live image of

the camera: move pipette, add cell, pipette template, or none. Based on which Left Panel:

Set-up and Control Tab is selected the result of left mouse click changes. For “add cell”

the third (wheel) mouse button translates the stage to the location that was clicked.

patcherBot Settings Tabs Settings tabs for tuning patch clamp parameters. The follow-

ing sections explain the features of these panels.
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Automated Seal Progress Monitor Real-time pipette monitoring during automated cell

approach and sealing.

Square Wave Resistance Test Viewer Real-time feedback of pipette electrode square

wave seal test, resistance measurement from this is used for automated cell approach and

sealing.

Automated Patch Status Indicator Lamp indicators that show if automated patch clamp

steps of the robot have been completed.

Terminate patcherBot Lamp Stop button to end the software controlling patcherBot.

Manual Control Buttons Lamp buttons that can be toggled to allow human operator

control over patch clamp steps.

“Validate”, if clicked at the end of a set of recordings the patcherBot will validate any

solution jump positions (piezo or manipulator jumps; the solution valve will be changed to

the 8th valve and any jumps will be repeated).

In short, the patcherBot will remove the cell with high positive pressure. The values are

programed to switch to the 8th position. After solution priming, all the jumps (piezo or

manipulator) will be repeated and the open tip current response is recorded. (note: the

solutions in the 8th position must produce a salt concentration differential to produce a

sufficient change in junction potential to detect readily).

“Human Control Done”, this lamp button is used when the patcherBot enters the “hu-

man positioning. . . ” state, when clicked the patcherBot will continue to the state that is

selected in the “state to advance to after human positioning” drop down box. The patcher-

Bot state the user selects should be limited to “detecting cell” if the user corrects the pipette

location to a position directly over the cell, “cell detected” if the user places the pipette on

to the cell, “gigaseal established” if the user places the electrode on the cell and forms a
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gigaseal with manual pressure control, “Successful breakin” if the user achieves the whole

cell conformation manually, “unsuccessful breakin” if at any point in the patching process

there is an issue which tells the patcherBot to move on to the next cell. (The “whole cell

recording” state can also be used, if the cells patched generally are leaky, perhaps due to

gap junctions with neighboring cells, and this is not going to cause issues with the experi-

mental protocols. For instance, in pulling a patch, the break-in resistance may be low, but

may improve when the patch is removed from the rest of the cell.)

“Command Pressure Slider” and “Fixed Pressure Level Lamp Buttons”, these al-

low the user to select and send commands to the pressure box to apply to the pipette.

“In Process Calibration”, click this lamp to have the patcherBot pause before start-

ing the next cell iteration. The pipette can be replaced or the solution manifold locations

can be checked or updated. To continue the patcherBot process, unclick the “In Process

Calibration” lamp button.

Left Panel: Change Pipette Tab

These are generally the most useful commands when setting up the patcherBot, learning to

use these will speed up new pipette loading and general use of the patcherBot.
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Both to 0 Brings pipette and stage to the set (0,0,0) position in (x,y,z). Note, this com-

mand is typically not safe when a new pipette is loaded as variation in pipette pulling

usually means that pipette are all not the same length.

Raise Manipulator Brings the manipulator up 1 mm in z-direction.

Send Manip to XY Zero Brings the manipulator to the zeros of the x,y-locations. This

option is typically the safest way to bring a new pipette into the area of the zero stage

location, then dropping the pipette down to the plane of the stage Zero usually allows one

to locate a shadow of the pipette on descent, and then allows for quick manipulation of the

new tip to the zero location and zeroing of the manipulator coordinates.

Send Manip to Approach Line Brings the manipulator into the experimental bath ax-

ially (removed 300 m tip to zero along the axis of the manipulator). This can cause some

issue when replacing the electrode, as pulled electrodes typically have a slight asymmetry

and so as the electrode is moved along the manipulator axis they may be out of the camera

field of view and the user may have difficulties in zeroing the pipette.

Raise/Lower Stage 300 um Raises or lowers the stage in z-direction by 300 m.

Zero Pipette (left, new Pipette) Set the current position of the pipette to zero (if new

pipette). This does not update any other locations. If you are unsure which Zero Pipette to

click, click this one.

Zero Stage (left) Set the current position of the stage to zero (if starting new experiment).

This does not update any other locations. If you are unsure which Zero Stage to click, click

this one.
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Zero Pipette (right) Set the current position of the pipette to zero. This button will zero

the pipette coordinates, and update all other locations (cleaning/wash baths and solution

manifold locations). Use this only if you have a previously zeroed pair of pipette/stage and

you are updating the zero location.

Zero Stage (right) Set the current position of the stage to zero. This button will zero

the pipette coordinates, and update all other locations (cleaning/wash baths and solution

manifold locations). Use this only if you have a previously zeroed pair of pipette/stage and

you are updating the zero location.

Setup Tab Panel

Data Save Folder Designated folder where data will be saved.

CPU Communication Ports Communication ports for controlling the DAQ. The DAQ

connects to the amplifier (input current/voltage, output voltage/current), the piezo-translator

control box, and the serially controlled solution valves.

Automated Patch Settings Automated patch clamp parameters.
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Fully or Partial Automated Operation Designate if full or partial automation is de-

sired. The lamp button should be on to enable the human control step of the patcherBot

process.

Machine Vision Settings Lamp buttons toggles to set machine vision settings.

Debugging Controls Lamp buttons toggles to debug specific states of the automated

patch clamp steps.

Pressure Box Controls Pressure box input (currently compatible with Neuromatic De-

vices pressure boxes).

Display Tab Panel

Camera Type Select the control type driver for the camera being used.

Selected Cell Location List Location of selected cells with respective to the calibrated

(0,0,0).

Computer Vision Tab Panel
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Computer Vision This tab shows the image of a selected cell as well as the pipette image

and templates for pipette detection.

Coordinate System Tab Panel

Solution Manifold Locations Designated locations of the solution manifold. The Lamp

indicators show if the location has been updated since the labview code has been in opera-

tion.
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Past Validation Run Viewer The “check Validation” lamp can be enabled to show the

most recent position validation set that has been run. It is best to disable this while the

patcherBot process is running, and only checking this while in “Human positioning”, “in

Process Calibration”, or the default initialized state “Click OK to start patcherBot”.

Manipulator Coordinate Parameters Coordinate transform and communication set-

tings for the manipulator. When building the patcherBot, these parameters need to be de-

termined, in simple terms these are the cartesian parameters that orient the two manipulator

settings to one another.

Extra Patching Settings Tab Panel

Max Break-in Pressure Setting Set the maximum pressure for break-in of cell.

The rest of the settings on this tab are backup/preset values, that can be loaded to

the current setting on the operation tab. Two sets of cell finding/patching settings can

be set and then swapped at will.
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Pipette Cleaning Tab Panel

Pre-Clean Button Toggle on or off if pre-cleaning of the pipette is desired. Pre-cleaning

can be turned on when the labview process must be stopped in the middle of an iteration,

before the cleaning steps, and allow you to clean the pipette as you restart but before at-

tempting to patch the first cell.

The other setting are for the protocol control for cleaning the pipette, you shouldn’t

have to modify this.

Designing a patcherBot Experiment Protocol

Planning Your patcherBot Protocol There are many things to consider when designing

your patcherBot Experiment Protocol.

Fully automated or minimal user assistance

Adherent cell experiment, lifted cell, or excised patch

Then choosing your number of experimental phases and what specific types of

protocol for each phase
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As always transfection efficiency and cell health are important factors, so choosing

the right number of cells to attempt to record from needs to be decided. We will

revisit these topics, after showing the experiment protocol interface.

Whole-cell Recording Application (opens upon successful break-in into cell)

Experiment Protocol Settings Tabs

Find here the options to design and document your patcherBot protocol.

General Experiment Settings

Waveform Simulation Jump Filter – computational frequency to filter the square wave

signal that is sent to the piezoelectric translator

Waveform Sampling Rate – Rate of data collection (also see setting box on the main VI,

set both to the same rate)

Don’t Lift button – Activate this button if you intend to do an experiment on adhered

cells

Lift Cell (or Pull Patch) – Activate this option if you want to lift the entire cell; light

suction will be applied after achieving whole cell and a spiral lifting trajectory should
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result in lifting the cell off the coverslip. In order for high efficiency cell lifting, the cells

should be plated on coverslips with a low concentration of cell adhering glass coating

(PDL) and the selected cells should be isolated ideally. If the button is not activated, the

patcherBot will attempt to pull a patch; the atmospheric pressure will be applied to the

pipette and will be pulled back in a withdrawing arch. In order for high efficiency patch

excising, the cells should be plated on coverslips with a normal (to high) concentration of

cell adhering glass coating (PDL) and the selected cells should be in a patch of multiple

cells to provide additional resistance to prevent cell detachment from the coverslip.

Time to wait for solution change – This should be determined empirically for each

individual patcherBot. Ideally the exchange times for all valves are similar, and should

simply be based on the length of tubing from the valve to the solution manifold (if the

solution reservoir level, top of the solution’s height above bath, and the tubing/manifold

cross sections are also similar).

How many Experimental Phases – Select the number of experimental phases you wish

to record in your experiment. Select 1-12 (corresponding to A-L) phases. The experiment

VI must be running (not running an experiment) for the experiment phases to update, the

selected number of experiment phase tabs will become active when as the input field is

changed (use the arrows).

Detect Recording Deterioration – If this option is selected, after each phase if the leak

current is >1000pA, a dialog box will pop up asking if the user wants to terminate experi-

ment and move to the next iteration.

Experiment Waveform Plots

Signals being sent to the voltage control on the amplifier or the piezoelectric translator.

Experiment Phase List and Lamps

When an experiment is initiated, after cell patching, the lamps on the left will light up

to indicate how many phases there will be in total, the fields will display which types of

phases will be performed, and the right lamps will light up when each phase is completed.
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Experiment Status Log

During the experiment, time stamped log of the patcherBot activities are recorded here and

saved at the conclusion of the experiment (status.txt).

Experiment Results Plot

The current/voltage response of the patcherBot activities are displayed here. There is no

live display, a sweep must be completed before it is displayed.

Experiment VI controls

Make Waveform – Calculate and display phase waveform previews (all previews live

update when they are modified).

Clear Waveform – This clears the phase waveform previews to free up space.

Save As – Saves all experiment settings to an .ini file.

Load – Loads an .ini file to the experiment subVI, only files created from the same

version can be loaded to prevent allocation errors.

Run – Starts the experiment according to the settings (during normal operation the

patcherBot will auto start when the it activates the experiment subVI).

Solution Documentation

Here the

solutions can be recorded, these fields are documented in a .txt file (experimentalHeader.txt).
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Membrane Test

The set-

ting for the membrane test can be set here.

Experiment Procedures

Ex-

perimental protocols are set here, there are 12 phases that can be programed into a single

experiment. The type of experiment for each phase is set by the dropdown box. The number

of activated phases is set by the numerical field on the settings tab.

Experiment Paradigms The available experiment phase types are as follows, each has in-

dividual settings to set the parameters of the experiment. If the VI is running the preview

will auto update so you can visually see the waveforms you are designing.

130



Gap Free – Current Clamp

Single Jump – Piezoelectric Translator
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Solution Change

Voltage Step
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Voltage Ramp

Voltage Pulse
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Jump Train – Piezoelectric Translator

Pair Pulse – Piezoelectric Translator
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Single Jump – Manipulator Jump

Gap Free - Voltage Clamp
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Multi-Jump – Manipulator Jump

Current Pulse
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Current Ramp

A.1.2 Before each experiment:

Preparation of the patcherBotPharma

Prepare electrophysiology rig for patch clamp experiment. Prepare 2% w/v Tergazyme

cleaning solution in room temperature distilled water.

Mix solution until all Tergazyme powder is dissolved.

Note: Because Tergazyme is an enzymatic detergent, the enzymatic component de-

grades over time. The manufacturer recommends making fresh solutions and using them

within 8 hours for maximum efficacy.

Using a syringe with a 0.2 µm filter and 23G needle, fill the appropriate bath reservoir

with freshly made 2% w/v Tergazyme (or extracellular solution for rinsing).

Be careful to not overfill the cleaning bath reservoir, as this can cause Tergazyme so-

lution to flow into the experimental chamber, potentially damaging cells. The Tergazyme

solution has very low surface tension so it will run even with the smallest amount of over-

filling. Also account for the amount of displacement the submerged the pipette will cause.

Fill pipette electrode with intracellular solution and load into headstage of manipulator.

Prepare biological sample and place into sample dish of patcherBotP harma.
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Load experiment settings for patcherBotPharma. After opening the main patcherBot VI,

the experiment subVI can be opened. Run the main VI to initialize the ports, then stop

the VI. Go to the experiment subVI, unclick “auto run” button and click the “auto WC run

trigger” lamp button. Run the subVI, then load an experiment .ini or program your desired

experimental protocols.

Starting a patch clamp experiment

Initialization Protocol

Calibrate the pipette electrode This details the initialization protocol in full, to be per-

formed the first time. Following these detailed steps there will be a recap of a briefer ini-

tialization protocol that can be performed if you ensure the placement of the manipulators,

bath, solution manifold, etc do not move between use.

Start initialization, press the calibrate button. Use Manipulator 1, then press the

“done” button (not shown).

First, select a stage z-plane position 300 µm above the cells. Select and save this as

the “home” position above a target cell. Press the “done” button.

Bring the pipette into the field of view under the microscope, and then lower the

pipette to the “home” plane set in the previous step and bring it to the middle of the

view. Press the “Pipette in focus” button. “Zero” the pipette tip at this location with

the “zero pipette” button. Press the “done” button.

Move the pipette to a position outside of experimental bath without risk of colli-

sion with other hardware and push the save “safe” position button. Press the “done”

button.

Move the pipette to a position above the bath where the pipette can translate side

ways without crashing into the bath chamber and push the save “above bath” position

button. Press the “done” button.
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Move the pipette and submerge it in the cleaning bath (this is the lowest posi-

tion that the patcherBot will search to find the pipette solution) and push the save

“cleaning bath” position button. Press the “done” button. Upon pushing done, the

patcherBot will move, according to the parameters field on this tab, and if appropri-

ately programed it should move straight up and then sideways to a position over the

wash bath.

Move the pipette and submerge it in the wash bath (this is the lowest position that

the patcherBot will search to find the pipette solution) and push the save “cleaning

bath” position button. Press the “done” button. Upon pushing done, the patcherBot

will move, straight up and then sideways to the safe location.

Bring the pipette back to the “home” position (“both to 0” button).

Save the pipette template, for pipette finding during the actual experiment, click

the video feed to save an image, the mouse click designates the XYZ coordinates of

the pipette tip.

The solution manifold positions can be programed/confirmed now (see below).

The next step is to click the cells to queue for serially patching. Left mouse button

selects the cell, an image is taken to compare/calibrate during fully automated use.

The third (wheel) button translates the stage where the click occurs. It is best to

click/select the each cell when the cells are near the center of the field of view.

If the solution manifold positions have already been set the patcherBot recording

process can be started with the “begin patch”.

Starting patcherBotPharma Initialization
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Select Manipulator

Zero Stage

Zero Manipulator

Set Safe Plane

Set Bath Clearance Plane
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Set Cleaning Bath Location

Set Wash Bath Location

Set Pipette Template Image

Add Cells for Patching
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Start patcherBotPharma Run

Set Solution Manifold Locations

There are several func-

tions that this tab has. The buttons in the top left can be used to send the manipulator to

previously saved positions. The dropdown box allows you to select a location and the “go”

button sends the pipette to this location. The dropdown box also is used to save the current

pipette location to the saved location array when the “choose position” button is pushed.

The “send jump” button sends a square wave pulse (filtered based on the filter frequency

field on the tab, and the direction is set by the jump polarity) to the piezoelectric translator.

If the pipette is appropriately placed at a solution interface, the solutions flowing on either

side of the interface have different salt concentration so that a junction potential differential

results in a current step response then the jump rise and fall times will be measured (20-80

time).

Labview Panel Manipulator Controls
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Change Pipette Control Panel

During the experiment – fully automated

patcherBotPharma will now attempt to patch each cell in the queue and if whole–

cell recording is achieved, then the patcherBotPharma protocol designated will be con-

ducted. During each iteration the patcherBot moves to the XY location above the next

cell, the pipette is translated to the same location. The patcherBot will attempt to verify

the pipette tip location, using a cross-correlation protocol using the pipette template as a

reference, the pipette will move up and down (15 µm), the best fit is found and the pipette

location is updated. The patcherBot then focuses down to the next selected cell. A similar

protocol (as with the pipette tip finding) is used with the cell to confirm its location. The

pipette is then brought down to a position just over the cell, then the cell hunting process

starts. The pipette steps down one increment, the resistance is checked, and this repeats (to

a set maximum). If the resistance crosses the detection limit, then the cells will attempt to

patch the cell, the cell sealing protocol then starts. Suction is applied at increasing amounts

based on if the patch is stalling or waits if the patch is actively occurring. If a gigaseal is

established, then the patcherBot will then move to break-in. High suction is applied in short

bursts, the patcherBot monitors for the capacitance of the electrode to increase, signifying
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that break-in was successful. If the resistance is still high, the patcherBot will move into

the experimental execution protocols, otherwise the pipette will be removed (high positive

pressure is applied and the pipette is retracted) and cleaned for the next iteration.

Follow along the various event states of patcherBotPharma or grab a cup of coffee.

During the experiment – semi-automated

patcherBotPharma will now attempt proceed to each cell in the queue and wait for the

operator to perform some parts of the process then will proceed to whole-cell record-

ing if successful, then the patcherBotPharma protocol designated will be conducted.

During each iteration the patcherBot moves to the XY location 100 m above the next cell,

the pipette is translated to the same location. The patcherBot then focuses down to the next

selected cell. The pipette is then brought down to a position just over the cell, then pauses

for operator intervention. The user can do all of these steps, or just set of the initial steps;

land the pipette on the cell, form a gigaseal, break in/enter whole cell conformation, and

pull a patch/lift the cell. After the operator has performed the patching tasks that they wish,

they can turn control back over to the patcherBot. The rest of the operations will be per-

formed, as described above. Notification sounds occur throughout the patcherBot operation

so that the operator can be away from the patcherBot but know when to check back in for

the next operator intervention. Follow along the various event states of patcherBotPharma or

grab a cup of coffee.

Notes to consider during experiment: Monitor patcherBotPharma operation for changes

in fluid levels of the bath reservoirs, decreases in yield, pipette clogs or breaks, and other

potential sources of failure. If pipette appears to be clogged (i.e., visible internal clog ob-

served in pipette tip or increase in resistance) or broken (i.e., visible broken tip or decrease

in resistance), then replace the pipette and repeat calibration.

144



Ensure there is no fluid exchange between the cleaning bath and the experimental bath.

When the tip of the pipette is in the cleaning bath, monitor the square wave pulse in voltage

clamp. If there is no electrical contact between the ungrounded cleaning bath and the

grounded experimental bath, you will see capacitive transients, similar to when the tip of

the pipette is in air. If there is electrical contact, you will see a square wave pulse, similar

to when the tip is submerged in the experimental bath. To resolve this, use a kimwipe to

remove small amount of fluid from the cleaning bath until electrical contact is eliminated.

Cleaning up

Stop the patcherBotPharma software.

Turn off amplifiers and remove consumables like a conventional patch clamp rig.

Empty the clean and rinse baths.

Data Storage and Analysis

The patcherBot data is stored in a date-time based folder structure. Experiment set-

tings and event status entries are saved. Images from various stages of the patcherBot

process are saved. The data is stored in the t1 folder in .lvm files which are ascii-de-

limited files, the waveform files are also saved. Membrane tests before, between, and

after phases are also recorded.
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There is also a beta patcherBot data viewer/analyzer (current version is 04 01). It has

the ability to analyze piezoelectric translator jumps as well as manipulator jumps.
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After selecting a recording folder, it allows one to glance through the results of all

experiment phases and step to other trials or experiment days.
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Happy Patching:
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APPENDIX B

PRELIMINARY ”SUPER” PIPETTES

B.1 Quartz and Focused Ion Beam-milled pipettes

Previous literature has shown that focused ion beam-milling (FIB) of borosilicate pipettes

showed considerable improvement in improving the resistance of gigaseals which is crit-

ical for single ion-channel recordings [122, 123, 124]. Single-channel recordings require

extremely high-quality, high-resistance seals and would benefit from a completely flat and

smoothed-out pipette tip [1]. Here, we began preliminary studies into the viability of using

not only quartz pipettes but FIB-quartz pipettes. All images were taken with a scanning

electron microscope (SEM). We see in Figure B.1 and Figure B.2 the difference in smooth-

ness between a regular quartz and FIB-quartz pipette. As reference, we also see in Fig-

ure B.3 the outer diameter change pre- and post-FIB mill. We also see that the resistance of

a pipette can be changed as a function of the pipette outer diameter (Figure B.4). This can

be adjusted by the FIB-milling area. Lastly, we see that the gigaseal change is significant

between a regular and FIB pipette highlighted in Table B.1.

Table B.1: Borosilicate vs FIB-milled Quartz Pipettes

Pipette Construction Resistance (Mohm) Gigaseal in grease (Mohm)
Borosilicate 2.7 11.8
Borosilicate 2.9 10.9
FIB/Quartz 5.9 100
FIB/Quartz 10.1 100
FIB/Quartz 6.9 100
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Figure B.1: SEM image of a quartz pipette. The tip of the pipette is rough and not smooth.
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Figure B.2: SEM image of a FIB-quartz pipette. The tip of the pipette has been milled to a
smooth surface.
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Figure B.3: SEM image of a FIB-quartz pipette showing the initially drawn diameter size
of the pipette and the size after FIB-mill. The tip of the pipette has been milled to a smooth
surface.
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Figure B.4: Resistance of a quartz pipette as a function of outer diameter due to focused ion
beam-milling. We can generate pipette resistances based on the milled size of the pipette’s
outer diameter.
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