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Rapid sensory adaptation is observed across all sensory systems, and strongly shapes sensory percepts in complex sensory environ-
ments. Yet despite its ubiquity and likely necessity for survival, the mechanistic basis is poorly understood. A wide range of pri-
marily in vitro and anesthetized studies have demonstrated the emergence of adaptation at the level of primary sensory cortex,
with only modest signatures in earlier stages of processing. The nature of rapid adaptation and how it shapes sensory representa-
tions during wakefulness, and thus the potential role in perceptual adaptation, is underexplored, as are the mechanisms that under-
lie this phenomenon. To address these knowledge gaps, we recorded spiking activity in primary somatosensory cortex (S1) and the
upstream ventral posteromedial (VPm) thalamic nucleus in the vibrissa pathway of awake male and female mice, and quantified
responses to whisker stimuli delivered in isolation and embedded in an adapting sensory background. We found that cortical sen-
sory responses were indeed adapted by persistent sensory stimulation; putative excitatory neurons were profoundly adapted, and
inhibitory neurons only modestly so. Further optogenetic manipulation experiments and network modeling suggest this largely
reflects adaptive changes in synchronous thalamic firing combined with robust engagement of feedforward inhibition, with little
contribution from synaptic depression. Taken together, these results suggest that cortical adaptation in the regime explored here
results from changes in the timing of thalamic input, and the way in which this differentially impacts cortical excitation and feed-
forward inhibition, pointing to a prominent role of thalamic gating in rapid adaptation of primary sensory cortex.
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Significance Statement

Rapid adaptation of sensory activity strongly shapes representations of sensory inputs across all sensory pathways over the
timescale of seconds, and has profound effects on sensory perception. Despite its ubiquity and theoretical role in the efficient
encoding of complex sensory environments, the mechanistic basis is poorly understood, particularly during wakefulness. In
this study in the vibrissa pathway of awake mice, we show that cortical representations of sensory inputs are strongly shaped
by rapid adaptation, and that this is mediated primarily by adaptive gating of the thalamic inputs to primary sensory cortex
and the differential way in which these inputs engage cortical subpopulations of neurons.

Introduction
Our experience of the world around us depends on context. For
instance, a noisy environment provides persistent sensory stimu-
lation, which can adapt the representations and percepts of sa-
lient sensory features embedded within the environment. Rapid
sensory adaptation describes such interactions between stimulus
history and perception, spanning milliseconds to seconds
(Whitmire and Stanley, 2016). A wealth of human psychophysi-
cal studies have documented perceptual adaptation in audition
(Smith and Faulkner, 2006; Bestelmeyer et al., 2010; Erb et al.,
2013), vision (Blakemore and Campbell, 1969; Blakemore and
Nachmias, 1971; Anstis et al., 1998; Ghodrati et al., 2019), and
somatosensation (Tannan et al., 2007), suggesting rapid sensory
adaptation lends a vital flexibility to organisms tasked with sur-
viving and thriving during rapid environmental changes.
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Despite the ubiquity of rapid sensory adaptation across sen-
sory pathways, and its likely relevance to function (Barlow,
1961), the neural basis has not been conclusively identified. A
large body of (mostly in vitro and anesthetized) work has impli-
cated the early sensory pathway; adaptation effects cascade to-
ward and culminate in primary sensory cortex (Ganmor et al.,
2010; Maravall et al., 2013; Lampl and Katz, 2017), and the na-
ture of cortical adaptation is consistent with perceptual effects. In
the vibrissa pathway of the anesthetized rodent for example, ad-
aptation induced through whisker stimulation shapes the ampli-
tude (Webber and Stanley, 2004, 2006; Boloori and Stanley,
2006; Maravall et al., 2007; Heiss et al., 2008; Boloori et al., 2010;
Ganmor et al., 2010; Wang et al., 2010; Cohen-Kashi Malina et
al., 2013; Ollerenshaw et al., 2014; Kheradpezhouh et al., 2017)
and spatial extent (Ollerenshaw et al., 2014; Zheng et al., 2015) of
responses to subsequent stimuli in primary somatosensory cor-
tex (S1). Yet two important questions remain unanswered. First,
what is the nature of cortical response adaptation during wake-
fulness, where baseline activity is elevated relative to the anesthe-
tized state (Greenberg et al., 2008; Vizuete et al., 2012; Aasebø et
al., 2017)? The thalamocortical (TC) pathway during wakefulness
may be in a baseline “adapted” state that is relatively impervious
to additional adaptation (Castro-Alamancos, 2004), and the neu-
ral basis for perceptual adaptation lies elsewhere, but this has not
been rigorously tested. Second, if the circuit is subject to sensory
adaptation during wakefulness, what are the underlying mecha-
nisms? Previous anesthetized and in vitro work implicates
TC and/or intracortical synaptic depression (Castro-Alamancos
and Oldford, 2002; Chung et al., 2002; Gabernet et al., 2005;
Cruikshank et al., 2007, 2010; Cohen-Kashi Malina et al., 2013),
which could explain why mean evoked rates are generally more
adapted in cortex than in thalamus (Chung et al., 2002; Khatri et
al., 2004; Gabernet et al., 2005). Yet adaptation also reduces tha-
lamic synchrony (Wang et al., 2010; Ollerenshaw et al., 2014)
and single-unit bursting (Whitmire et al., 2016) under anesthe-
sia. Given the sensitivity of cortex to the timing of thalamic
inputs (Usrey et al., 2000; Swadlow and Gusev, 2001; Bruno and
Sakmann, 2006; Wang et al., 2010; Ollerenshaw et al., 2014), this
suggests a potential role for thalamic spike timing in cortical
adaptation.

Here, we address these unknowns by recording from and
modeling S1 of the awake, head-fixed mouse during rapid sen-
sory adaptation. We found that despite the relatively high level of
baseline activity typical of wakefulness, putative excitatory neu-
rons in S1 were profoundly adapted by background sensory
stimulation. In particular, mean evoked firing rates, theoretical
stimulus detectability, and synchronous cortical spiking were all
significantly reduced in the adapted state, consistent with previ-
ously-observed changes in perceptual report (Ollerenshaw et al.,
2014; Waiblinger et al., 2015). Several lines of evidence, including
the recording of the thalamic inputs under a range of optogenetic
controls and computational modeling, suggest this primarily
reflected reduced synchronous thalamic firing and robust tha-
lamically-driven feedforward inhibition in the adapted condi-
tion, with little contribution from TC and intracortical synaptic
depression. Taken together, these results establish the role of the
TC circuit in rapid adaptation during wakefulness, and implicate
a more critical role of thalamic input than previously thought.

Materials and Methods
All procedures were approved by the Institutional Animal Care and Use
Committee at the Georgia Institute of Technology (protocol numbers

A100223 and A100225) and were in agreement with guidelines estab-
lished by the National Institutes of Health.

Surgery
Experiments were conducted using C57BL/6J, Ai32xNR133 (Bolus et al.,
2020; Ai32 crossed with the NR133 Cre-recombinase driver line; Gerfen
et al., 2013), and Ai32xPV-Cre mice of both sexes. All mouse lines were
purchased from The Jackson Laboratory. Mice were induced with 5%
isoflurane in an induction chamber, then transferred to a heating pad on
a stereotaxic instrument, and maintained at 1–2% isoflurane for the re-
mainder of the surgical procedure. A custom stainless steel headplate
was fixed to the exposed skull with Metabond dental cement (Parkell),
exposed bone and tissue were then sealed with Metabond and either
super-glue (Loctite 404; Henkel) or Vetbond Tissue Adhesive (3M).
Metabond was used to fashion a well surrounding the left hemisphere.
The well was filled with Kwik-Cast (World Precision Instruments) and
covered with a thin layer of Metabond, and the mouse was returned to
its home cage. Mice were given preoperative (buprenorphine) and post-
operative (ketoprofen) analgesic, and were allowed to recover for 3 d
before additional handling.

Habituation
Three days after headplate implantation, mice were handled for at least
15min, and then returned to their home cage. On subsequent days, mice
were gradually habituated to head-fixation on a custom platform con-
sisting of a tunnel with headpost clamps at one end. The first three daily
habituation sessions lasted 15, 30, and 45min, respectively, but mice
were returned to their home cage if they displayed signs of distress. We
then gradually extended session durations until mice would tolerate at
least 1.5 h of fixation and whisker stimulation without signs of distress.
Mice that did not meet these criteria were removed from the study, or
used for anesthetized recordings (see below).

Awake electrophysiological recordings
We recorded from five Ai32xNR133, four C57BL/6J (wild-type) and one
Ai32xPV-cre awake mice of both sexes (up to three awake sessions per
mouse). We used intrinsic optical signal imaging acquired under anes-
thesia to identify at least one putative principal column in S1. On the
morning of the first recording session for each animal, we anesthetized
the mouse as described above, and opened an ;500 � 500 mm craniot-
omy centered over a putative cortical column. When acquiring simulta-
neous ventral posteromedial (VPm) and S1 recordings, we opened a
second craniotomy of similar size over the stereotactic coordinates for
VPm (1.8 mm lateral from midline by 1.8 mm caudal from bregma) and
slowly inserted either a single-channel tungsten electrode (2 MV, FHC)
or 32-channel silicon probe (NeuroNexus A1x32-Poly3-5 mm-25s-177)
to a depth of;3 mm. We adjusted the electrode depth while presenting
continuous 10-Hz “sawtooth” stimulus trains to individual whiskers
until we could identify a putative principal barreloid (by observing
broad-waveform units with robust, short-latency, minimally-adapting
sensory responses to stimulation of a single whisker, and at most compa-
ratively weak responses to stimulation of surrounding whiskers; Brecht
and Sakmann, 2002), before slowly retracting the electrode/probe. We
then covered exposed brain tissue with agarose, filled the well with
Kwik-Cast, and allowed the mouse to recover in its home cage for at least
2 h. After recovery, we head-fixed the awake mouse, removed the Kwik-
Cast, filled the well with either saline, mineral oil, or agarose, and
inserted an electrode/probe into each open craniotomy using a Luigs
and Neumann manipulator. For S1 recordings, we inserted a multi-
channel silicon probe (NeuroNexus) oriented 35° from vertical. We
used either a 32-channel linear (A1x32-5 mm-25-177-A32), 32-channel
“Poly3” (A1x32-Poly3-5 mm-25s-177), or 64-channel, four-shank
“Poly2” (A4x16-Poly2-5 mm-23s-200-177) configuration probe. For
VPm recordings, we inserted either a tungsten optoelectrode (2
MV, FHC, with attached 200-mm optic fiber, Thorlabs), 32-channel
silicon probe (A1x32-Poly3-5 mm-25s-177), or 32-channel silicon
optoelectrode (A1x32-Poly3-5 mm-25s-177-OA32LP, with attached
105 mm optic fiber coupled to a 200-mm optic fiber, Thorlabs).
Optic fibers were coupled to a 470 nm LED (M470F3, Thorlabs).
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When the barreloid we functionally identified during the anesthe-
tized VPm mapping session was not topographically-aligned with
the targeted S1 column, we referenced the (Coronal) Allen Brain
Atlas to adjust the position of the VPm probe before descending.
We inserted the probe(s) slowly to avoid excessive tissue dimpling,
and waited at least 30 min after probe insertion to begin recording,
to allow the tissue to settle. Continuous signals were acquired
using a either a Cerebus (Blackrock Microsystems) or Tucker
Davis Technologies acquisition system. Signals were amplified, fil-
tered between 0.3 Hz and 7.5 kHz, and digitized at either 30 kHz or
24,414.0625 Hz.

After the first recording session, we removed the probe(s), covered
exposed tissue with agarose, and sealed the well with Kwik-Cast and a
thin layer of Metabond. We obtained either two or three recording ses-
sions (one per day) from each mouse using the original craniotomy, but
each time targeting a different cortical column and barreloid.

Anesthetized extracellular recordings
We recorded from three C57BL/6J (wild-type), four Ai32xPV-Cre, and
three Ai32xNR133 mice of both sexes under isoflurane anesthesia. Mice
were anesthetized and implanted with headplates, and we opened a sin-
gle craniotomy (either ;500 � 500 mm or 1 � 1 mm) over S1, as
described above. In some cases, the principal column was first identified
using intrinsic optical signal imaging, as described above. In other cases,
we inserted a single tungsten electrode into the stereotactic coordinates
for the center of S1, and defined the putative principal whisker to be that
which evoked the largest LFP response. We then inserted a 4� 16 silicon
probe array (A4x16-Poly2-5 mm-23s-200-177) to a depth of 700 mm.
We oriented the probe to avoid blood vessels on the cortical surface. For
a subset of these experiments, we obtained additional sessions by repeat-
ing the stimulation protocol using the whisker that evoked the maxi-
mum LFP response on a shank different from the first. For each such
session, we determined the putative principal column off-line using
white-noise-evoked spiking. For each shank, we summed single-unit
and multi-unit (see below) spiking across all trials for the 1-s window
preceding feature onset. We divided the across-trial mean white-noise-
evoked response by the across-trial SD of spontaneous spiking, and the
shank with the largest resulting value was determined to correspond to
the principal column.

Anesthetized intracellular recordings
We recorded ongoing, sensory-evoked, and light-evoked subthreshold
activity from four sensory-responsive and light-responsive neurons in
two mice using an Autopatcher system (Kodandaramaiah et al., 2016),
as described in detail previously (Stoy et al., 2020). Briefly, we head-
plated and identified the putative C2 column using intrinsic optical sig-
nal imaging in two isoflurane-anesthetized Ai32xNR133 transgenic
mice, and opened a 1� 1 mm craniotomy over the column, as described
above. We then used an Autopatcher 1500 (Neuromatic Devices) to pro-
vide pressure and measure pipette resistance, and an algorithm based on
these measurements to navigate around blood vessels in an automated
fashion while the pipette descended through cortical tissue. Finally, we
applied a recently-developed automated motion-compensation proce-
dure (Stoy et al., 2020) for synchronizing the motion of the pipette tip to
that of the targeted neuron before forming a seal. These experiments
used Multiclamp 700B amplifiers (Molecular Devices), and signals were
digitized at 20kHz (cDAQ-9174, National Instruments), and were
recorded in PClamp 10 in current-clamp mode.

Whisker stimulation
We used a precise, computer-controlled galvanometer (Cambridge
Technologies) with attached tube to stimulate individual whiskers
(Whitmire et al., 2016; Waiblinger et al., 2018; Sederberg et al., 2019;
Liew et al., 2020). The galvanometer was controlled using either a cus-
tom MATLAB GUI and Simulink Real-Time (MathWorks), or the Real-
time eXperiment Interface application (http://rtxi.org/), sampling at
1 kHz. We inserted the whisker into the tube, which was positioned;10
mm from the whisker pad. We delivered sawtooth stimulus features (ex-
ponential rise and decay waveforms lasting ;17ms, with reported

velocity defined by the average over the 8.5-ms rising phase; Wang et al.,
2010) either in isolation, or embedded in frozen sensory white noise (i.e.,
white noise waveforms that were identical across trials). To generate the
white noise waveforms, the value at each time-step was drawn from a
Gaussian distribution (with SD of 1°), and the resulting signal was low-
pass-filtered at 100Hz (third-order Butterworth; Waiblinger et al.,
2015). The white noise waveform around the feature waveform was
dampened with an inverted Gaussian, with SD 25.5ms.

The stimulus conditions were randomized across trials. The stimulus
consisted of 1.5 s of either white noise (adapted trials) or no white noise
(“control” trials), with the onset of the embedded feature at 1 s. The
intertrial interval was a random value (drawn from a uniform distribu-
tion) between 2 and 3 s. In a subset of experiments, optogenetic stimula-
tion of either VPm or TC terminals was randomly interleaved (see
below). We typically obtained at least 100 trials per stimulus condition.

Optogenetic stimulation
In a subset of acute anesthetized experiments in Ai32xNR133 trans-
genic mice, we stimulated TC terminals in S1 using blue (470 nm)
light from an LED (ThorLabs), and recorded either spiking or sub-
threshold S1 responses. We positioned either a 200- or 400-mm optic
fiber (ThorLabs) just above the exposed cortical surface, adjacent to
the probe or patch pipette. Light pulses were either 10 or 15ms in du-
ration, and were delivered either in isolation or embedded in sensory
white noise delivered to the whisker by the galvanometer. We titrated
the light level at the beginning of each recording session to evoke
cortical responses that were comparable in amplitude to those evoked
by punctate whisker stimulation.

In a subset of awake experiments in Ai32xNR133 transgenic mice,
we presented the above sensory stimulus protocol, in addition to a set of
“LED” trials in which we delivered a step input of 470 nm light to VPm
beginning 1 s before and ending 0.5 s after the delivery of an isolated
sensory feature. The light was delivered via LED-coupled fiber attached
to the electrode/probe (described above). We titrated the light level at
the beginning of each recording session such that steady-state light-
evoked firing rates in VPm (based on threshold crossings of high-pass-
filtered voltage recordings) approximately matched those evoked by the
white noise whisker stimulus.

Videography and whisker motion analysis
In five awake recording sessions, we also recorded whisker videography
using a CCD camera (DMK 21BU04.H USB 2.0 monochrome industrial
camera, The Imaging Source, LLC). The face was illuminated using IR
LEDs (860nm, DigiKey), and the face opposite the galvanometer was
imaged at 30Hz. We used external triggers to acquire frames, and
recorded these triggers in Synapse to synchronize frames to all other
recorded signals. We analyzed the videos using the python implementa-
tion of FaceMap (www.github.com/MouseLand/FaceMap; Stringer et al.,
2019). For each video, we used the FaceMap GUI to select two regions of
interest (ROIs): one that captured most of the whiskers, and a second of
the nose. We then processed the videos for each ROI, which involved
first calculating the “motion energy” of each frame (i.e., the absolute dif-
ference between the current and previous frame), and then computing
the singular vectors of the motion energy. For each video, we confirmed
that the time series of the resulting first SVDs for each ROI (which we
call the “motion timeseries”) were qualitatively consistent with nose/
whisker dynamics. We then calculated the relative whisker and nose
motion as a function of the sensory stimulus for each recording session.
To do this, we first calculated the across-time mean value of the motion
timeseries in the 1 s preceding sensory feature onset for each trial, which
we call the “mean motion.” We compared the mean motion values for
the two stimulus conditions (“spontaneous” and “white noise”) using
the Wilcoxon signed-rank test. For visualization, we then calculated the
across-trial mean absolute motion value for the spontaneous and white
noise conditions, and normalized to the spontaneous value.

Spike-sorting
We sorted spikes off-line using KiloSort2 (https://github.com/MouseLand/
Kilosort2) for clustering, and phy (https://github.com/cortex-lab/phy) for
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manual curation of clusters. During manual curation, clusters were either
merged or separated based primarily on waveform distributions across the
probe and cross-correlogram structure. We discarded as “noise” those clus-
ters with across-instance mean waveform that did not resemble a character-
istic spike on any channel. All remaining clusters were labeled as either
single-units or multi-units by downstream analysis (see below).

Units retained for analysis
We labeled each curated cluster as either a single-unit or multi-unit
based on the signal-to-noise ratio (SNR) and interspike interval (ISI) dis-
tribution. For each cluster and recorded spike, we calculated the absolute
voltage difference between the trough and subsequent peak (VTP) on
each channel. We defined the SNR to be the across-trial mean VTP di-
vided by the across-trial SD, for the channel on which the mean VTP
was greatest. Additionally, we calculated “ISI violation percentage” for
each cluster using the autocorrelogram (ACG). We defined the violation
percentage to be the percentage of spikes in the 0- to 1-ms ACG bin. We
then defined a well-isolated single-unit to be a cluster with SNR . 4.0,
VTP. 50mV, and ISI violation percentage below 1%. All other clusters
were classified as multi-units. In our anesthetized recording sessions, we
used an alternate probe configuration, which was somewhat less well-
suited to obtaining well-isolated units. We therefore slightly relaxed our
ISI violation constraints (to 1.5%) for defining “well-isolated” units, to
yield more RS and FS cells from these datasets (see Materials and
Methods). This did not qualitatively change our results. For S1, we fur-
ther segregated single-units into regular-spiking (RS) and fast-spiking
(FS) units based on the mean waveform. Again, using the channel on
which the waveform was largest, we calculated the time from trough to
subsequent peak (TTP). We classified S1 units as either FS (putative in-
hibitory) or RS (putative excitatory) neurons based on waveform width
(McCormick et al., 1985; Niell and Stryker, 2010; Guo et al., 2017; Isett
et al., 2018; Speed et al., 2019; Yu et al., 2019). Specifically, S1 units with
TTP, 0.4ms were classified as FS, and all others as RS. Waveforms
were in general narrower for VPm units than for cortical units, consist-
ent with previous work (Barthó et al., 2014). We therefore classified
VPm “RS” cells as those with TTP. 0.3ms, and excluded units with
narrower waveforms, which likely originated from either the cell bodies
or axon terminals of neurons in reticular thalamus (Barthó et al., 2014).
For putative VPm units, we further required that the absolute peak of
the PSTH of responses to isolated punctate stimuli occur between 2 and
10ms of stimulus onset. Finally, when analyzing activity of single-units
and/or multi-units, we only included those units with at least 0.25 mean
postfeature spikes per trial, and a significant change (p, 0.05, Wilcoxon
signed-rank test) in firing rate after stimulus onset on control (unad-
apted) trials, using the weakest sawtooth stimulus delivered during that
recording session and 50ms (30ms) prestimulus and poststimulus win-
dows for S1 (VPm).

Experimental design and statistical analyses
When comparing two sets of values (that were matched samples) across
stimulus conditions, we used the Wilcoxon signed-rank test (imple-
mented in Python using the wilcoxon function in the Scipy library), and
Bonferroni-corrected the resulting p-values for multiple comparisons
where applicable. When comparing two independent samples (e.g., nor-
malized response rates for RS and FS cells), we used the Kruskal–Wallis
test (implemented in Python using the kruskal function in the Scipy
library).

For any analysis resulting in a single value for a given recording ses-
sion calculated using all trials (e.g., mean synchronous spikes), we tested
for significance of change across conditions by re-sampling trials with
replacement, re-calculating the final value for the re-sampled pseudo-
data, and calculating the 95% confidence intervals (Bonferroni-corrected
if necessary) of the resulting distribution of values.

The number of cells and animals used to calculate each reported
result is included in Results and/or figure captions.

Analyses
All analyses were performed using custom scripts in Python 3.0. The
details of each analysis are presented below.

Receiver operator characteristic (ROC) analysis
We calculated the theoretical detectability of sensory features for each
significantly-responsive RS unit (see above) by applying ideal observer
analysis (Wang et al., 2010; Ollerenshaw et al., 2014) to the “population
response” distributions for baseline and feature-evoked activity. For this
analysis, we excluded putative inhibitory neurons (FS units), as we were
interested in interpreting the loss of excitatory drive from cortical neu-
rons, likely to play a role in downstream signaling and thus relevant for
percepts. For each unit, we calculated the firing rate in a 50-ms baseline
(prefeature) and postfeature window on each trial. For baseline activity,
we used a window beginning 500-ms preceding feature onset, as the
white noise was largely dampened in the 50-ms window immediately
preceding the feature on adapted trials. We then calculated the across-
trial mean (m) and SD (s ) of the observed firing rates, and generated
“population” firing rate distributions, or samples drawn from g distribu-
tions parametrized by the data. Specifically, we drew 1000 samples from
a g distribution CðNpa; u Þ, where a ¼ m2=s 2, u ¼ s 2=m, and N is the
assumed number of identical neurons to which the ideal observer has
access (Britten et al., 1992; Stüttgen and Schwarz, 2008; Wang et al.,
2010). We report results using N=10, but results were qualitatively simi-
lar for N=1, 5, and 20. For each feature velocity, we calculated the true-
positive and false-positive rates for 30 evenly-spaced threshold values
between 0 and the maximum response amplitude. We then generated
the ROC curves by plotting the set of true-positive values versus the
false-positive values. We quantified the theoretical detectability as the
area under the ROC curve (AUROC). Because the sensory white noise
was presented on adapted trials, it was possible that the adaptive
decrease in feature detectability was due in some degree to elevated,
white-noise-evoked baseline firing. To isolate the effects of feature
response adaptation, we calculated AUROC for a “hybrid” condition
using the feature-evoked distributions from adapted trials, and baseline
distributions from control trials. Finally, we repeated this analysis by sys-
tematically varying the width of the baseline and feature-evoked win-
dows, from 5 to 50ms in 5-ms increments, yielding a time-resolved
measure of feature detectability in each condition.

Feature response latency and synchrony analysis
We sought to estimate the feature response latency of each S1 unit from
the peristimulus time histogram (PSTH). However, in contrast to the rel-
atively well-populated grand PSTHs, the sparsely-populated PSTHs of
individual neurons confound latency calculations. As such, we con-
volved the spike trains of each neuron with a Gaussian kernel (1ms SD),
yielding a convolved aggregate spike count time series, or a smoothed
PSTH. We defined the response latency (Tonset) for each stimulus condi-
tion to be the time at which the smoothed PSTH exceeded a threshold of
4 SDs of the prestimulus values (calculated from control trials). We fur-
ther calculated the Tonset adaptation index (AI) for each unit as the dif-
ference between adapted and control values divided by the sum of the
values. Our reported results were qualitatively robust to reasonable
choices of onset threshold (2.5, 3.5, 4.0, 5.0, and 6.0 SDs) and Gaussian
kernel SD (0.5, 1.0, 2.0, and 3.0ms; data not shown).

We calculated the population synchrony of feature responses using
the population grand cross-correlogram (CCG) of single-unit spiking,
separately for VPm and S1. First, we treated each sensory-responsive
unit as a “reference” unit, and calculated the spike times of all other
simultaneously-recorded units relative to those of the reference unit.
Specifically, for each trial and spike in a reference unit, we calculated the
spike times of all other simultaneously-recorded units relative to the ref-
erence spike time in a620-ms window around the reference spike time,
and appended these to a grand set of relative spike times. We repeated
this for all spikes, trials, and reference units. We then binned the grand
set of relative spike times (using 1-ms bins) to generate the grand CCG.
We generated a “randomized” grand CCG by producing a grand set of
random relative spike times (620ms, drawn from a uniform distribu-
tion), equal in length to the actual grand set, followed by binning. We
then subtracted the randomized CCG from the actual CCG, such that
the value at each time lag indicated the number of events beyond that
predicted by a random, uncorrelated process. Finally, we divided the
CCG by the number of contributing pairs. We defined the mean
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synchronous spike count to be the sum of the resulting CCG in a 67.5-
ms window (Wang et al., 2010). We calculated confidence intervals by
re-sampling the grand set of relative spike times with replacement, and
re-calculating the CCG and synchrony as described above. To include a
pair of neurons in this analysis, we required at least 20 feature-evoked
spikes across all trials for both neurons in both the control and adapted
conditions. Our results were qualitatively robust to different choices of
minimum spike count and synchrony window (data not shown). For
each feature level, we further calculated the grand CCG and synchrony
for a hybrid condition, in which each neuron’s spike times from the con-
trol condition were subsampled to match the rate of the adapted condi-
tion. For the minority of neurons with larger responses in the adapted
condition, we retained all spikes from the control condition.

S1 membrane potential analysis
We removed action potentials from intracellular voltage recordings by
first identifying spike times and interpolating between the values 2.5ms
before and 2.5ms after the peak of the action potential. To identify spike
times in each recording, we first calculated the first time derivative time
of the membrane potential at each time step. Spike onsets were defined
to be positive crossings of 5 SDs of this time series. For each onset, the
spike peak time corresponded to the next time at which the derivative
was less than or equal to zero. After interpolation, we low-pass-filtered
the resulting time series (100Hz, third order Butterworth). For each trial,
we calculated the amplitude and time-to-peak of the subthreshold
response to the (sawtooth sensory or optogenetic terminal light) stimu-
lus, in a 50-ms window following stimulus onset. We first subtracted the
minimum voltage value in this window on each trial, and defined the am-
plitude of the response to be the maximum voltage value, and the time-
to-peak was the time between stimulus onset and this peak value. We then
calculated the across trial median amplitude and time-to-peak.

TC network model
We constructed a simple model of the TC network using custom scripts
written in Python 3.6.10. All code is freely available on request. We mod-
eled a single cortical barrel as a clustered network of excitatory and in-
hibitory single-compartment leaky integrate-and-fire (LIF) neurons,
subject to excitatory synaptic inputs from a “barreloid” of VPm neurons,
and well as excitatory non-thalamic inputs that were independent across
cortical neurons. For each of the control and adapted conditions, we
simulated 50 trials, each lasting 150ms, with a time-step of 0.05ms.

We modeled a single VPm barreloid as forty independent trains of
tonic and burst spikes, drawn from the empirical VPm PSTHs. The
ongoing and evoked rates for each neuron were set to the mean empiri-
cal values, and were then multiplied by a rate modulation factor drawn
from a skewed g distribution (with a shape value of 2.0, a scale value of
1.0, then re-scaled to have a mean value of 1.0), to mimic the broad firing
rate distributions of VPm neurons previously reported (Pinto et al.,
2000; Bruno and Simons, 2002; Wang et al., 2010; Whitmire et al., 2016).
Bursts were modeled as pairs of spikes with 2.5ms ISI.

Non-zero TC synaptic weights were drawn from a broad distribution
(a rectified Gaussian distribution with mean 1.0 and SD 2.0), to mimic
the reported variability in TC synaptic strengths and/or efficacies (Bruno
and Simons, 2002; Gabernet et al., 2005; Bruno and Sakmann, 2006;
Cruikshank et al., >2007, 2010; Sermet et al., 2019). Mean initial TC syn-
aptic strengths were the same for excitatory and inhibitory neurons
(Sermet et al., 2019), but TC convergence was higher for inhibitory neu-
rons (75% for inhibitory neurons, 50% for excitatory neurons). Finally,
VPm neurons with the highest firing rates did not synapse onto excita-
tory neurons (Bruno and Simons, 2002); for each VPm synapse onto an
excitatory neuron, if the rate modulation factor of the VPm neuron was
.1.5 SDs from 1.0, we set that connection to zero, and replaced it with a
connection (of the same strength) to a VPm neuron with rate modula-
tion factor below 1.5. In response to a spike in a given thalamic neuron,
all TC synapses from that neuron instantly decayed (by a factor of 0.75),
followed by exponential recovery (with time constant 25ms). We
assigned a minimum latency of 2ms (3ms) to each TC synapse onto an
inhibitory (excitatory) neuron, to reflect the slightly faster arrival of tha-
lamic inputs to L4 FS cells (Cruikshank et al., 2007; Kimura et al., 2010).

Each TC synapse was assigned an additional temporal latency value
between 0 and 1ms, drawn from a uniform distribution, which helped
to promote evoked cortical firing that was less time-locked across the
network. Importantly, the higher TC convergence for inhibitory neu-
rons, the rate-dependent TC connectivity described above, the shorter
TC synaptic latencies onto inhibitory neurons, and intrinsic neuronal
and intracortical connection parameters (see below) together supported
strong feedforward inhibition in this model network, despite the equiva-
lent mean TC synaptic weights onto the two neuron types.

Each thalamic spike resulted in a postsynaptic conductance wave-
form in each postsynaptic cortical neuron, with excitatory reversal
potential 50mV. Given a thalamic spike at time 0, we modeled the
resulting postsynaptic conductance waveform g tð Þ as a conductance am-
plitude �g multiplied by a gating variable G tð Þ. The gating variable at a
given TC synapse had the form of a difference of two exponentials,
resulting in rise and subsequent decay in the synaptic conductance fol-
lowing a presynaptic spike at time 0:

g tð Þ ¼ gGðtÞ

G tð Þ ¼ W
t exc
m

t d � t r
e�ðt�tVPm

l
Þ=td � e�ðt�tVPm

l
Þ=t r½ �;

where W is the weight of the TC synapse, t excm is the membrane time
constant of excitatory neurons, t d is the decay time constant, t r is the
rise time constant, and tVPml is the latency of the synapse. We selected
rise and decay time constants of 0.2 and 1.0ms, respectively, for all TC
synapses, yielding a relatively fast rise and slow decay. We include t excm in
the numerator of the leading factor so that the gating variable is unitless.
Note that this means the across-synapse mean integrated value of G(t)
will be equal to t excm , which should be taken into account when interpret-
ing absolute values of TC synaptic conductance amplitudes. We tuned
the TC synaptic conductance amplitude (to 30 nS) such that near-simul-
taneous firing of multiple thalamic neurons was required to evoke action
potentials in target neurons (Bruno and Sakmann, 2006), when intra-
cortical synaptic strengths were set to zero.

Each cortical network neuron also received random excitatory “non-
thalamic” inputs, to promote baseline network activity. For each neuron,
spike times were drawn from a homogeneous Poisson process, with rate
60Hz. The synaptic weights for random external inputs were drawn
from a rectified, normalized Gaussian distribution (with mean of 1.0, SD
of 2.0, then rectified, then divided by its mean), to support variable
ongoing firing rates across network neurons. Each random spike
resulted in a postsynaptic conductance waveform, with the same rise and
decay time constants as for TC inputs, and with conductance amplitude
60 nS.

We modeled a single cortical column as a network of 800 excitatory
and 100 inhibitory neurons, which approximates the relative numbers of
these neuron subtypes across layers in S1 (Lefort et al., 2009). Excitatory-
to-excitatory connection probability was 4%, excitatory-to-inhibitory
was 20%, inhibitory-to-excitatory was 17.5%, and inhibitory-to-inhibi-
tory was 17.5%. While these numbers are approximately three times
lower than what has been reported within a column in S1 (Avermann et
al., 2012), these lower connection probabilities were necessary to main-
tain network stability, and the relative values are in qualitative agreement
with experimental measurements. We imposed spatial clustering of con-
nectivity via a “small-world” network connectivity (Litwin-Kumar and
Doiron, 2012; Wright et al., 2017a,b; Hoseini et al., 2019), with 10% re-
wiring probability. First, all neurons were organized on a continuous
ring. Then, outputs from a given cortical excitatory network neuron
were projected to 32 of its nearest excitatory neighbors. For each of these
outputs, the connection was reassigned to another randomly-selected
(not previously connected) excitatory neuron, with probability 10%. In
other words, most connections were nearest-neighbor, but some were
random (and possibly long-distance). Each nonzero connection weight
was drawn from a heavy-tailed b distribution (with a value 0.11, b
value 1.0, and then re-scaled to have mean value 1.0), to approximate the
variable intracortical synaptic strengths previously reported in cortex

Wright et al. · Cortical Adaptation duringWakefulness J. Neurosci., June 23, 2021 • 41(25):5421–5439 • 5425



(Avermann et al., 2012; Cossell et al., 2015; Pala and Petersen, 2015).
This process was repeated for all neuron pair types, according to the con-
nection probabilities listed above. All intracortical synapses were
assigned a latency of tCxl = 1.0ms, and rise and decay time constants of
0.2 and 1.0ms, respectively, and the synaptic gating variables evolved as
described above for TC synapses. Intracortical synaptic conductance
amplitudes were 27.5 nS for excitatory-to-excitatory connections, 30 nS
for excitatory-to-inhibitory connections, 40 nS for inhibitory-to-excita-
tory connections, and 30 nS for inhibitory-to-inhibitory connections.

For network LIF neurons, we selected intrinsic neuronal properties
that were consistent with previous modeling studies, and/or were moti-
vated by previous experimental work. We set the membrane time con-
stant of excitatory neurons (inhibitory neurons) to be 30ms (20ms),
reflecting the moderately higher input resistances of cortical excitatory
neurons reported in awake mouse (Gentet et al., 2010). Inhibitory neu-
rons also had shorter refractory periods (1 vs 2ms), which supported
higher firing rates, as observed previously (Bruno and Simons, 2002;
Khatri et al., 2004; Gentet et al., 2010; Taub et al., 2013). Excitatory neu-
rons were subject to an inhibitory spike-rate adaptation conductance,
with a 1-ms rise time constant, and 30-ms decay time constant. We
tuned the time constants and amplitude of this conductance such that
the ISI of spikes evoked by tonic current injection gradually increased
over the duration of the stimulus. This conductance served to stabilize
excitatory firing, and therefore the network as a whole. For each neuron,
the leak reversal potential Eleak was drawn from a uniform distribution
between �70 and �60mV (which added variability in spike timing
across the network), and the leak conductance amplitude was 100 nS. All
neurons had a spike threshold of�45mV, reset to�59mV immediately
after a spike, and were held at the reset value during the refractory
period.

For each condition, we simulated 50 trials, each lasting 150ms
(including a 50-ms “buffer window” to allow the network to reach stead-
state, a 50-ms “prestimulus” window, and a 50-ms “poststimulus” win-
dow), with a time-step of 0.05ms. At each time-step, the membrane
potential V of a given network neuron of type Y (where Y is either E or I,
representing an excitatory or inhibitory neuron) evolved according to
the equations

V t½ � ¼ V t � 1½ � � dt
tmgleak

gleak V t � 1½ � � Eleakð Þ1 Iexc t½ �1 Iinh½t�
� �

Iexc t½ � ¼ ðgYE t � tCx
l

� �
1 gVPm t � tVPm

l

� �
1 grand t � 1½ �ÞðV t � 1½ � � EexcÞ

Iinh t½ � ¼ gYI t � tCx
l

� �ðV t � 1½ � � EinhÞ

gYZ t½ � ¼ �gYZSYZ½t�

SYZ t½ � ¼ SYZ t � 1½ � 1� dt
t d

� �
1

dt
t d

XYZ t � 1½ �

XYZ t½ � ¼ XYZ t � 1½ � 1� dt
t r

� �
1 t exc

m

dt
t r

W � T t � tCx
l

� �
;

where gYZ is the summed synaptic conductance time series from all pre-
synaptic network neurons of type Z=E|I onto this target neuron of type
Y=E|I, gVPm is the summed synaptic conductance time series from all
presynaptic VPm neurons, and grand is an excitatory synaptic conduct-
ance resulting from Poisson process spike times that were drawn inde-
pendently for each neuron. The equations for SYZ and XYZ represent the
implementation of the gating variable G(t) described above, associated
with conductance of type Z onto neuron of type Y.W is the (input) syn-
aptic weight matrix for presynaptic neurons of type Z onto neurons of
type Y, and T is the binary spike train sequence for all presynaptic neu-
rons of type Z. Excitatory neurons were also subject to an inhibitory
spike-rate-adaptation current, described above.

We quantified model responses by calculating the peaks of the grand
PSTHs for excitatory and inhibitory LIF neurons and divided adapted
values by control values, yielding the normalized adapted response. We
generated CCGs (as described above) for 200 randomly-selected excita-
tory-excitatory and inhibitory-inhibitory pairs, and for 100 VPm-VPm
pairs.

We further employed alternate models to parse the roles played by
synchronous thalamic spikes and feedforward inhibition. For the
“reduced synch”models, we maintained the mean spike rates of the orig-
inal model, but manually adjusted drawn VPm spike times to reduce
synchrony. Specifically, if a drawn VPm spike time was within65ms of
the empirical PSTH peak time, we shifted the spike to a random later
time with probability P(shift), within ;20ms of the PSTH peak. We
repeated this process for P(shift) = 0.1, 0.2, 0.3, and 0.4. For the “identical
TC connectivity”model, excitatory and inhibitory neurons had the same
TC convergence values (50%), TC synaptic latencies were identical for
excitatory and inhibitory neurons, and we did not require that VPm
neurons with the highest rates synapse exclusively onto inhibitory
neurons.

Results
To investigate the adaptive effects of persistent sensory stimula-
tion on S1 sensory responses during wakefulness, we presented
precise deflections to a single whisker of the awake, head-fixed
mouse using a computer-controlled galvanometer, and recorded
extracellular spiking activity in the corresponding principal col-
umn of S1, and/or principal barreloid of VPm (Fig. 1A; see
Materials and Methods). We presented punctate sawtooth sen-
sory features either in isolation or embedded in an adapting
background stimulus (frozen sensory white noise; Fig. 1A). The
punctate stimulus feature captures the basic nature of the high
velocity “stick-slip” whisker motion events that occur as a result
of whisker contacts with larger surface irregularities during active
sensation (Ritt et al., 2008; Wolfe et al., 2008; Jadhav et al., 2009;
Jadhav and Feldman, 2010). During whisker contacts with surfa-
ces, these stick-slip events are embedded in patterns of smaller-
amplitude, irregular deflections (Jadhav and Feldman, 2010),
simplistically captured here using low-amplitude, repeatable
background white noise whisker stimulation, which has been
shown to alter perceptual reports in behaving rats (Waiblinger et
al., 2015, 2018) and adapt thalamic feature responses under anes-
thesia (Whitmire et al., 2016). We first characterized the effects
of the background stimulus on baseline and feature-evoked corti-
cal firing during wakefulness (Figs. 1–3), and then sought to
identify the mechanisms underlying these effects through a bat-
tery of additional experiments (Figs. 4–7) and TC network mod-
eling (Fig. 8).

S1 exhibits profound and differential sensory adaptation
during wakefulness
We first characterized the effects of the background white noise
adapting stimulus on baseline spiking activity in S1. We segre-
gated well-isolated, sensory-responsive cortical units into RS (pu-
tative excitatory) and FS (putative inhibitory) neurons (Fig. 1B;
see Materials and Methods). The sensory white noise evoked a
sharp increase in mean RS and FS firing, such that mean rates
were significantly elevated during the “early” white noise
response window relative to spontaneous activity (Fig. 1C,D).
Firing rates rapidly adapted, but remained significantly elevated
above spontaneous levels in the “late” white noise response win-
dow (Fig. 1D). The effect was generally more pronounced for FS
cells (Fig. 1C,D). Importantly, this elevation in baseline firing
rates did not reflect white-noise-evoked whisking; not only were
there distinct features within each PSTH, consistent with
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stimulus-locked firing and therefore a
largely stationary whisker (Fig. 1C), but we
also confirmed using whisker videography
in a subset of recording sessions that
whisker (Fig. 1D, bottom) and nose (data
not shown) motion did not systematically
change when the whisker white noise was
applied (see Materials and Methods). As
such, it is likely that the induced elevation
in cortical firing rates was largely because
of afferent sensory drive.

Next, we investigated the adaptive
effects of the background stimulus on
responses to sensory features during wake-
fulness. We delivered a 300°/s feature to a
single whisker, either in isolation (the con-
trol condition), or embedded in back-
ground stimulation (the adapted condition,
Fig. 1A; see Materials and Methods), with
the feature delivered 1 s after background
stimulus onset. To avoid distortion of the
feature waveform, the background stimulus
was dampened with an inverted Gaussian
waveform in the neighborhood of the fea-
ture (Waiblinger et al., 2015; Whitmire et
al., 2016; see Materials and Methods). This
also allowed prefeature RS and FS firing
rates to return to near-baseline values at
feature onset (Fig. 1E). We delivered both
moderate (300°/s) and relatively strong
(900°/s) features in a subset of experiments.
In the control condition, features evoked
robust, short-latency spiking responses
(Fig. 1E), consistent with previous work in
the anesthetized (Bruno and Simons, 2002;
Pinto et al., 2003; Khatri et al., 2004; Wang
et al., 2010) and awake (Musall et al., 2014)
rodent. We next asked whether the back-
ground stimulus appreciably adapted fea-
ture responses, or whether the relatively
high baseline firing rates during wakeful-
ness (Fig. 1D) resulted in a “preadapted”
circuit (Castro-Alamancos, 2004). We
found that S1 feature responses were in fact
substantially muted when features were em-
bedded in the background stimulus (Fig.
1E). To characterize RS and FS feature
responses and the effects of adaptation,
we calculated across-trial mean evoked
rates using a 50-ms window following
feature onset. For both cell types and fea-
ture velocities, the peak (Fig. 1E) and
mean (Fig. 1F) evoked rates were reduced
in the adapted condition. Interestingly,
adaptation appeared to be more profound
for RS cells, in terms of proportional
changes in sensory responses (Fig. 1E,F).
To further quantify the effects of adapta-
tion on a cell-by-cell basis, and to capture
cell-type-specific adaptation, we calcu-
lated the normalized adapted response for
each cell (i.e., the across-trial mean
adapted response rate divided by the

Figure 1. S1 exhibits sensory adaptation during wakefulness, and RS neurons are more profoundly adapted than FS neu-
rons. A, Experimental setup. We recorded in S1 of the awake, head-fixed mouse while presenting precise single-whisker stimula-
tion. Sawtooth punctate sensory features were delivered either in isolation (control condition) or embedded in sensory white
noise (adapted condition). A, top, Grand mean6 SEM waveforms for all well-isolated FS (blue, N= 95) and RS (red, N= 119)
significantly responsive single-units recorded in S1 of awake mice (see Materials and Methods). Bottom, Distribution of mean
waveform widths (TTP) for all units, with color denoting RS and FS designation. B, top: grand mean (6 SEM) waveforms for all
responsive regular-spiking (RS, red) and fast-spiking (FS, blue) cortical units. Bottom: distribution of waveform widths for RS and
FS units. C, Grand PSTHs for RS (putative excitatory, top) and FS (putative inhibitory, bottom) from a subset of all recording ses-
sions (for which we used the same white noise stimulus). D, top, Grand-average mean (6 SEM) rates for spontaneous activity
(i.e., no sensory stimulation) and early (0–200ms) and late (500–700ms) windows following onset of sensory white noise
(***p , 0.0005, **0.0005 � p , 0.005, Wilcoxon signed-rank test). RS: spontaneous rate = 6.12 6 0.60 Hz; white noise
early rate = 9.75 6 0.80 Hz; white noise late rate = 7.77 6 0.76 Hz, mean 6 SEM. Spontaneous versus white noise early:
W= 274, p=4.59� 10�10; spontaneous versus white noise late: W= 799.5, p=5.92� 10�4; white noise early versus white
noise late: W= 425, p=9.95� 10�9, Wilcoxon signed-rank test, N=119 units from 19 recording sessions, FS: spontaneous
rate = 12.59 6 1.29 Hz, white noise early rate = 31.73 6 3.29 Hz; white noise late rate = 24.04 6 2.6 Hz, mean 6 SEM.
Spontaneous versus white noise early: W= 4.0, p= 9.13� 10�15; spontaneous versus white noise late: W= 237.5, p=3.34
� 10�11; white noise early versus white noise late: W= 220.0, p=1.88� 10�11, Wilcoxon signed-rank test, N= 95 units
from 19 sessions. Bottom, Relative whisker motion in the absence (“spont”) and presence (white noise) of white noise whisker
stimulation, from five recording sessions with simultaneous electrophysiology and whisker videography (see Materials and
Methods). E, Grand PSTHs for all responsive RS (top, N=119) and FS (bottom, N=95) units, for two punctate stimulus veloc-
ities. F, Across-neuron mean (6 SEM) firing rates for all responsive neurons, for 300°/s (left) and 900°/s (right) punctate stimuli
(***p , 0.001, Wilcoxon signed-rank test). RS 300°/s mean 6 SEM control: 17.08 6 1.02, adapted: 11.36 6 1.01, 33.5%
decrease, W= 523.0, p=1.03� 10�15, Wilcoxon signed-rank test, N= 119 units from 19 recording sessions; 900°/s control:
17.19 6 1.25 Hz, adapted: 9.92 6 1.08 Hz, 42.3% decrease, W= 43.0, p=1.47� 10�8, N=49 units from 8 sessions; FS:
300°/s control: 41.72 6 3.85 Hz, adapted: 34.1 6 3.39 Hz, 18.3% decrease, W= 785.5, p= 2.90� 10�8, N= 95 units from
19 sessions; 900°/s control: 42.88 6 5.61 Hz, adapted: 40.03 6 6.43 Hz, 6.6% decrease, W= 156.5, p= 0.19, N=29 units
from 8 sessions. G, Population median (6 SEM) normalized adapted responses for all responsive RS (red) and FS (blue) neurons
(see Materials and Methods; ***p, 0.001, Kruskal–Wallis test). RS 300°/s median normed adapted response = 0.61, FS median
normed adapted response = 0.77, H = 16.94, p=3.85� 10�5, Kruskal–Wallis test; 900°/s RS median normed adapted
response = 0.49, FS median normed adapted response = 0.87, H = 14.91, p=1.13� 10�4. H, Population median normalized
adapted responses (6 SEM) by binned cortical depth (see Materials and Methods).
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mean control rate; see Materials and
Methods). For both feature velocities and
cell types, population median normalized
adapted responses were less than one (cap-
turing the general adaptive reduction in
evoked rate), and RS cells were indeed sig-
nificantly more adapted than FS cells (Fig.
1G). This differential effect was not spe-
cific to any cortical depth (Fig. 1H).

In summary, we observed profound
rapid sensory adaptation in S1 of the awake
mouse, and cortical putative excitatory neu-
rons were more adapted than putative in-
hibitory neurons.

Adaptation reduces the theoretical
detectability of punctate sensory stimuli
The adaptation of S1 feature responses should
diminish the ability to distinguish the sensory
feature from the sensory background. To
quantify the potential impact of adaptation
on feature detectability, we applied a signal
detection theory framework to the spiking
activity of putative excitatory neurons, which
are likely to play a role in downstream signaling
and thus are relevant for percepts. Qualitatively,
theoretical feature detectability is inversely
related to the degree of overlap between the
baseline and feature-evoked firing rate distri-
butions. For each S1 RS unit, we generated
spike rate distributions using 50-ms windows
of baseline and feature-evoked spiking, and
drew samples from “population” g distribu-
tions (Fig. 2A) parametrized by the empirical
mean and SD (Wang et al., 2010; see
Materials and Methods). Consistent with the
adaptive decrease in single-neuron response
rates, adaptation tended to move the feature-
evoked distribution toward the baseline dis-
tribution, increasing the degree of overlap
(Fig. 2A, right). We quantified the overlap by calculating the
AUROC (Wang et al., 2010; Whitmire et al., 2016; AUROC, Fig.
2B), which has a value of 1.0 for non-overlapping distributions,
and 0.5 for complete overlap. Adaptation significantly reduced
the across-unit mean AUROC for both feature velocities (Fig.
2C, bottom). Notably, repeating this analysis for a hybrid sce-
nario using the adapted feature-evoked distributions and control
baseline distributions did not significantly alter AUROC values
relative to the true adapted condition (Fig. 2C, left), demonstrat-
ing that the decrease in detectability reflected feature response
adaptation, rather than an elevation of baseline rates in response
to the adapting stimulus.

The above analysis considers spiking in 50-ms prefeature and
postfeature windows, and the results are consistent with the ad-
aptation of mean feature-evoked RS rates. But it is also apparent
from visual inspection of the RS grand PSTHs that the time
course of S1 spiking varied with feature velocity and sensory ad-
aptation. To resolve the dependence of feature detectability on
time, we varied the width of the postfeature window from 5 to
50ms in 5-ms increments (see Materials and Methods).
Consistent with the RS grand PSTHs, we found that in the con-
trol condition, AUROC values increased drastically in the first
15ms of the feature response, and reached peak values within

;25ms (Fig. 2D). The separation between control and adapted
AUROC values largely occurred during this early phase of the
response (Fig. 2D). In other words, the adaptive loss of theoreti-
cal detectability largely reflected a decrease in short-latency fea-
ture-evoked spiking.

Together, these results quantify the degree to which sensory
adaptation reduces the theoretical detectability of sensory fea-
tures during wakefulness, and demonstrate that this largely
reflects adaptation of the early feature response. This is qualita-
tively consistent with previous reports showing significant adap-
tation of theoretical feature detectability in the anesthetized rat
(Wang et al., 2010; Ollerenshaw et al., 2014; Zheng et al., 2015),
and perceptual threshold in awake rats (Ollerenshaw et al., 2014;
Waiblinger et al., 2015).

Adaptation strongly influences the timing of feature-evoked
spiking in S1
As highlighted above, adaptation altered S1 sensory response
timing, a key component of cortical sensory representations that
strongly influences how and what signals are transmitted to
downstream brain structures. Specifically, in addition to the dra-
matic reduction in early feature-evoked spiking (particularly
among RS cells), visual inspection of the grand PSTHs suggested
adaptation increased the latency of feature responses. These

Figure 2. Adaptation reduces the theoretical detectability of punctate sensory stimuli. A, Baseline and feature-evoked
population spike rate distributions for one example RS unit (see Materials and Methods). For this unit (qualitatively rep-
resentative of the average), adaptation decreased the mean population response rate, increasing the overlap of the base-
line and feature-evoked distributions (right). B, ROC curves for example unit, for the control (black line) and adapted
(gray line) conditions, and associated AUROC values. C, Grand average mean (6SEM) theoretical detectability (AUROC)
versus stimulus condition for all significantly responsive RS units (***p, 0.0005, Wilcoxon signed-rank test); 300°/s
control: mean 6 SEM AUROC= 0.81 6 0.02, adapted: 0.66 6 0.02, hybrid: 0.66 6 0.02, control versus adapted:
W= 1936.0, p= 2.09� 10�11; control versus hybrid: W= 1154.0, p= 1.91� 10�16; adapted versus hybrid: W= 5243.0,
p= 0.81, Wilcoxon signed-rank test, N=119 units from 19 recording sessions; 900°/s control: mean6 SEM AUROC= 0.89
6 0.02, adapted: 0.736 0.03, hybrid: 0.716 0.03; control versus adapted: W= 166.0, p=3.18� 10�6; control versus
hybrid: W= 106, p= 1.78� 10�7; adapted versus hybrid: W= 528.0, p=0.21, N=49 units from 8 recording sessions. D,
Grand mean (6 SEM) time-resolved theoretical detectability (AUROC) for all significantly-responsive RS units (see Materials
and Methods), for the control (empty dots) and adapted (filled dots) conditions.
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phenomena may be relevant for interpreting the mechanistic ba-
sis of S1 adaptation, and the likely perceptual implications; both
are consistent with weaker feedforward excitatory drive to S1,
and could influence signaling to downstream targets. We there-
fore sought to quantify these adaptive effects, and began by cal-
culating the response latency (Tonset) for each S1 unit (see
Materials and Methods). We found that for both RS and FS cells,
and for both stimulus strengths, adaptation increased Tonset val-
ues (Fig. 3A). To further quantify and compare adaptive changes
in Tonset across cell types, we calculated the Tonset AI for each cell
(see Materials and Methods) and compared population medians
for RS and FS cells. For both stimulus strengths, the adaptive
increase in response onset times was significantly greater for RS
cells (300°/s RS median Tonset AI = 0.21, FS median Tonset

AI= 0.02, p=1.21� 10�4, Kruskal–Wallis test; 900°/s RS median
Tonset AI = 0.13, FS median Tonset AI = 0.00, p=4.93� 10�4).

Next, we reasoned that the observed changes in S1 PSTH
shapes might reflect a decrease in synchronous spiking among
cortical neurons. In general, the degree of synchronous firing
among a population of neurons is likely related to the effect on
synaptic targets; stronger inhibitory synchrony will tend to
silence postsynaptic neurons, and stronger excitatory synchrony
will be more efficacious for driving postsynaptic neurons, possi-
bly downstream from S1. Indeed, it has been shown that coordi-
nated population firing is a better predictor than mean rates of
stimulus identity (Jadhav et al., 2009; Safaai et al., 2013; Zuo et
al., 2015) and behavioral stimulus discrimination performance
(Safaai et al., 2013; Zuo et al., 2015) when rodents whisk across
textured surfaces.

To calculate the prevalence of synchronous spikes in feature
responses, we populated the CCG for RS-RS and FS-FS pairs for
each stimulus condition using spike trains from all pairs of
simultaneously-recorded responsive cells, and defined synchro-
nous spikes to be those within a 67.5-ms window around zero
lag (Fig. 3B; see Materials and Methods; Wang et al., 2010). We
found that adaptation drastically reduced the amplitude and
sharpness of the RS-RS CCGs (Fig. 3C, left), while more modestly
reducing the grand CCG amplitude for FS-FS pairs (Fig. 3C,
right). This represented a significant decrease in synchronous
spike counts for both pair types and stimulus velocities (Fig. 3D).
As reflected in the grand CCGs, the decrease in FS-FS synchrony
was significant, but proportionally smaller than that of RS-RS syn-
chrony. We next asked whether the adaptive decrease in synchro-
nous spikes simply reflected the decrease in mean evoked rate, or
possibly also other de-synchronizing mechanisms. For each fea-
ture velocity and cell type, we simulated a hybrid condition in
which we subsampled spikes from the control condition, matching
the rate of the adapted condition (see Materials and Methods). We
found that synchronous spike counts were significantly lower in
the adapted than in the hybrid condition (Fig. 3D). Thus, although
the relationship between mean rate and synchronous spike count
is nonlinear, the adaptive decrease in synchronous spiking was

Figure 3. Adaptation increases response latency and reduces pairwise synchronous spiking
in S1. A, Grand mean onset times for RS (red) and FS (blue) neurons, for control and adapted
responses to 300°/s stimulus (***p, 0.001; single gray bar: p� 0.05, Wilcoxon signed-
rank test, control versus adapted); 300°/s RS mean 6 SEM control: Tonset = 8.81 6
0.53ms, adapted: 15.31 6 0.98 ms, 73.9% increase, W= 397.0, p= 3.11� 10�11,
Wilcoxon signed-rank test, N= 119 units; FS control: Tonset = 6.69 6 0.37ms, adapted:
8.956 0.7 ms, 33.9% increase, W = 245.0, p= 8.11� 10�7, N= 95 units; 900°/s RS con-
trol: Tonset = 7.89 6 0.49 ms, adapted: 11.36 6 1.07ms, 43.9% increase, W = 90.0,
p= 1.70� 10�5, N= 49 units; FS control: Tonset = 5.67 6 0.29ms, adapted: 6.27 6
0.63ms, 10.5% increase, W= 20.5, p= 0.27, N= 29 units. B, Illustration of synchronous
spike-count calculation. The CCG was constructed using all valid pairs of simultaneously-
recorded S1 units, then scaled by the number of contributing pairs, and shuffle-corrected
(see Materials and Methods). The synchronous spike count was the number of spikes in a
67.5-ms window around zero lag. C, Grand RS-RS (left) and FS-FS (right) CCGs for responses
to 300°/s stimulus, for the control (dark lines) and adapted (light lines) conditions. Bands
indicate 97.5% confidence intervals (from re-sampling spikes with replacement; see
Materials and Methods). D, Synchronous AP counts for control, adapted, and hybrid condi-
tions (see Materials and Methods), calculated from grand CCGs. (Error bars indicate 97.5%
confidence intervals; *p, 0.025, re-sampling spikes with replacement; see Materials and

/

Methods.) RS-RS pairs: 300°/s mean 697.5% confidence interval control: synch AP
count = 54.156 3.58 spikes/pair; adapted: 13.696 2.05 spikes/pair; hybrid: 16.616 1.67
spikes/pair; N= 189 valid pairs from 17 sessions; 900°/s control: 141.936 5.42 spikes/pair;
adapted: 21.186 2.8 spikes/pair; hybrid: 34.876 3.84 spikes/pair; N= 55 pairs from 6 ses-
sions. FS-FS pairs: 300°/s control: 191.03 6 7.64 spikes/pair; adapted: 106.54 6 7.49
spikes/pair; hybrid: 126.33 6 6.69 spikes/pair; N= 118 pairs from 17 sessions; 900°/s con-
trol: 558.27 6 26.03 spikes/pair; adapted: 257.15 6 19.67 spikes/pair; hybrid: 423.61 6
17.97 spikes/pair; N= 33 pairs from 6 sessions. See Materials and Methods for definition of
“valid pairs.”
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greater than that predicted by the loss of fea-
ture-evoked spikes in individual cortical neu-
rons alone. This non-trivial decrease in
synchronous firing suggests the feedforward
drive to S1 is not only less efficacious for driving
spikes in the adapted condition, but may also be
less synchronous across thalamorecipient
neurons.

Thus, rapid sensory adaptation in S1 during
wakefulness not only reduced mean evoked
spike rates and theoretical feature detectability,
but also disrupted timing through increased
response latencies and reduced synchrony. In
both aspects of timing, as with mean evoked
rates, the adaptive effects on RS cells were
more dramatic. The loss of synchronous excita-
tory firing has implications for the driving of
targets downstream of S1, and ultimately for
perception and behavior. The more modest
decrease in synchronous inhibitory firing
implies that inhibitory neurons were still rela-
tively strongly driven in the adapted condition.
Further, the synchronous inhibitory spiking
that survives adaptation should provide robust
feedforward inhibition to S1 excitatory neu-
rons, which may in part explain the more pro-
found adaptation of RS cells.

S1 sensory responses are also adapted under
anesthesia, but RS cells are not differentially
adapted
Having established the extent and characteris-
tics of rapid sensory adaptation in S1 of the
awake mouse, we next turned our attention to
the underlying mechanisms, which may reflect
a combination of feedforward, recurrent, and
top-down sources. Our first step in doing so
was to compare these results to those from the
anesthetized mouse, for two reasons. First,
while the background stimulus elevated S1 fir-
ing rates at least in part via feedforward sensory
inputs (as evidenced by the degree of stimulus-
locked firing), it is still possible that this adapt-
ing stimulus also evoked top-down modulation, e.g., through
systematic changes in ongoing S1 state via arousal-related neuro-
modulation (Reimer et al., 2014, 2016; Mcginley et al., 2015;
McGinley et al., 2015). In the anesthetized mouse, ongoing state
changes caused by endogenous processes should be independent
of the sensory white noise, and as such, white-noise-induced
changes in mean feature representations should not reflect top-
down mechanisms. Second, isoflurane anesthesia tends to silence
the secondary posteromedial nucleus of thalamus (Suzuki and
Larkum, 2020), lowers baseline cortical firing rates (Greenberg et
al., 2008; Vizuete et al., 2012; Aasebø et al., 2017), and generally
weakens cortical inhibition (Haider et al., 2013) and other intra-
cortical interactions (Suzuki and Larkum, 2020). We therefore
repeated our experiments in a different set of mice lightly-anes-
thetized with isoflurane, using the anesthesia to unmask the feed-
forward inputs from VPm to S1.

As expected, baseline firing rates under anesthesia were quite
low compared with those recorded during wakefulness (Fig. 4B,
C). Despite these differences in baseline activity, the anesthetized
experiments recapitulated several key aspects of the awake data.

First, the background stimulus evoked a sharp increase in RS and
FS firing in the early white noise response window, with rapid ad-
aptation toward late response rates that were significantly elevated
above spontaneous values (Fig. 4B,C), and with stimulus-locked
firing evident among FS neurons (Fig. 4B). Further, adaptation
clearly decreased the peak (Fig. 4D) and mean evoked firing rates
of responses to 300°/s features (Fig. 4E), and qualitatively shifted
PSTHs to higher response latencies (Fig. 4D). Notably, however,
excitatory neurons were not differentially adapted under anesthe-
sia (Fig. 4F). In light of this, it is possible that the stronger cortical
inhibition typical of wakefulness (Haider et al., 2013) contributed
to adaptation of RS cells in our awake recordings via robust feed-
forward inhibition.

In summary, the elevation of (stimulus-locked) firing with pre-
sentation of background sensory stimulation, and net adaptation of
S1 feature responses was robust to anesthesia, suggesting that feed-
forward mechanisms are sufficient to explain these phenomena. In
contrast, the differential adaptation of S1 excitatory neurons was
abolished by anesthesia, suggesting the set of mechanisms underly-
ing this phenomenon, possibly including strong feedforward inhi-
bition, were not all active in the anesthetized state.

Figure 4. S1 sensory responses are also adapted under anesthesia, but RS cells are not differentially adapted. A,
Experimental setup. S1 sensory responses were recorded in mice lightly-anesthetized with isoflurane (see Materials
and Methods). B, Summed spiking activity of RS (putative excitatory) and FS (putative inhibitory) from one example
recording session. Each row indicates spike times of all simultaneously-recorded RS (red) and FS (blue) neurons on a
single trial. C, Grand-average mean (6SEM) rates for spontaneous activity (i.e., no sensory stimulation) and early
(0–200 ms) and late (500–700 ms) windows following onset of sensory white noise (***p , 0.0005, **0.0005 � p
, 0.005, Wilcoxon signed-rank test). RS: spontaneous rate = 2.34 6 0.38 Hz; white noise early rate = 4.96 6
0.50 Hz; white noise late rate = 3.33 6 0.45 Hz, mean 6 SEM. Spontaneous versus white noise early: W= 55,
p= 1.13� 10�7; spontaneous versus white noise late: W= 191, p= 3.89� 10�4; white noise early versus white
noise late: W= 214, p= 3.61� 10�4, Wilcoxon signed-rank test, N= 46 units from 14 recording sessions, FS: spon-
taneous rate = 0.85 6 0.28 Hz, white noise early rate = 8.97 6 0.85 Hz; white noise late rate = 5.52 6 1.13 Hz,
mean 6 SEM. Spontaneous versus white noise early: W = 0, p= 5.95� 10�5; spontaneous versus white noise late:
W= 6, p= 1.41� 10�4; white noise early versus white noise late: W= 20, p= 9.02� 10�4, Wilcoxon signed-rank
test, N= 21 units from 14 sessions. D, Sensory response grand PSTHs for all responsive RS (left, N= 46) and FS (right,
N= 21) units recorded under anesthesia, for 300°/s punctate stimulus velocity. E, Grand mean (6SEM) rates for cells
contributing to PSTHs in D (***p, 0.001, **0.001 � p, 0.01, Wilcoxon signed-rank test). RS mean6 SEM con-
trol: 12.27 6 0.88 Hz, adapted: 7.75 6 1.01, 36.8% decrease, W = 184, p= 9.82� 10�5; FS control: 18.61 6
2.19 Hz, adapted: 11.94 6 2.61, 35.8% decrease, W= 21, p= 0.001. F, Population median (6SEM) normalized
adapted responses for all responsive RS (red) and FS (blue) neurons (see Materials and Methods).
RS 300°/s median normed adapted response = 0.54, FS median normed adapted response = 0.57, H = 0.01, p= 0.91,
Kruskal–Wallis test (N.S. p� 0.05, Kruskal-Wallis test).

5430 • J. Neurosci., June 23, 2021 • 41(25):5421–5439 Wright et al. · Cortical Adaptation duringWakefulness



Adaptation primarily influences feature response timing in
VPm thalamus
Having established that several aspects of S1 sensory adaptation
may reflect feedforward mechanisms, we next sought to identify
those mechanisms. Previous in vitro and anesthetized work has
demonstrated adaptation of evoked rate (Hartings et al., 2003;
Khatri et al., 2004; Gabernet et al., 2005; Ganmor et al., 2010;

Wang et al., 2010; Ollerenshaw et al., 2014; Whitmire et al., 2016;
Liu et al., 2017), single-unit bursting (Whitmire et al., 2016) and
population synchrony (Wang et al., 2010; Ollerenshaw et al.,
2014) in VPm, suggesting S1 adaptation is inherited to some
degree directly from VPm, yet this has never been tested during
wakefulness. We therefore next repeated our experiments while
recording spiking activity in VPm of the awake mouse (Fig. 5A;

Figure 5. Adaptation reduces tonic and burst firing rates, and synchronous spike counts, in VPm sensory responses. A, top, Experimental setup. We recorded extracellular spiking in VPm of
the awake mouse, primarily using high-density silicon probes (see Materials and Methods). Bottom, Criteria for classification of putative tonic (black) and burst (red) VPm spikes. B, Grand
PSTHs for putative tonic (black) and burst (red) VPm spikes from a subset of all recording sessions. C, Grand-average mean (6SEM) rates for spontaneous activity (i.e., no sensory stimulation)
and early (0–200 ms) and late (500–700 ms) windows following onset of sensory white noise (***p, 0.0005, Wilcoxon signed-rank test). Tonic: spontaneous rate = 10.286 1.31 Hz; white
noise early rate = 16.696 2.77 Hz; white noise late rate = 14.846 2.39 Hz, mean6 SEM. Spontaneous versus white noise early: W= 42, p= 8.91� 10�5; spontaneous versus white noise
late: W= 75, p= 1.12� 10�3; white noise early versus white noise late: W = 135, p= 0.045, Wilcoxon signed-rank test; burst: spontaneous rate = 0.36 6 0.07 Hz, white noise early
rate = 0.856 0.2 Hz; white noise late rate = 0.266 0.08 Hz, mean6 SEM. Spontaneous versus white noise early: W = 65.5, p= 3.0� 10�3; spontaneous versus white noise late: W = 51,
p= 4.65� 10�3; white noise early versus white noise late: W = 37, p= 4.35� 10�4, Wilcoxon signed-rank test, N= 30 units from 9 sessions. D, Grand PSTHs for tonic (black) and burst
(red) spikes from all putative VPm neurons, for 300°/s punctate stimulus. Note the presence of both a short-latency primary peak, and a shorter, secondary peak in tonic firing rates (E). This
secondary peak in the grand PSTH resulted from a subset of neurons with both early and late responses, often within individual trials, and was likely evoked by the return of the whisker to
resting position in the second half of the sawtooth waveform. E, Across-neuron mean (6SEM) firing rates for all putative VPm neurons (**0.001� p, 0.01; ***p, 0.001, Wilcoxon singed-
rank test). Tonic 300°/s mean 6 SEM rate control: 30.2 6 3.41 Hz, adapted: 24.32 6 2.92 Hz, 19.5% decrease, W= 83, p= 0.002, Wilcoxon signed-rank test, N= 30 units; 900 control:
29.98 6 3.47 Hz, adapted: 26.87 6 3.18 Hz, W = 44.5, p= 0.22, N= 16 units; burst: 300°/s control: 3.79 6 1.08, adapted: 1.37 6 0.73 Hz, 64.0% decrease, W = 47, p= 6.21� 10�4;
900°/s control: 5.75 6 3.13 Hz, adapted: 2.02 6 0.88, 64.9% decrease, W = 5, p= 4.6� 10�3. F, Grand shuffle-corrected cross-correlograms for all simultaneously-recorded putative VPm
neurons, for the control (black) and adapted (gray) conditions. Bands indicate 97.5% confidence intervals (from re-sampling spikes with replacement; see Materials and Methods). G,
Synchronous AP counts for control, adapted, and hybrid conditions (see Materials and Methods), calculated from grand CCGs. (Error bars indicate 97.5% confidence intervals; *p, 0.025, re-
sampling spikes with replacement; see Materials and Methods.) 300°/s mean6 97.5% confidence interval control: synch AP count = 46.696 8.12 spikes/pair; adapted: 17.296 4.0 spikes/
pair; hybrid: 20.46 4.25 spikes/pair; N= 48 valid pairs from 7 sessions; 900°/s control: 51.386 8.22 spikes/pair; adapted: 30.816 6.3 spikes/pair; hybrid: 31.36 5.35 spikes/pair; N= 37
pairs from 3 sessions (see Materials and Methods for definition of “valid pairs”).
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see Materials and Methods), and asked how adaptation altered
the rate and timing of thalamic sensory responses.

We first parsed VPm spikes into putative burst and tonic
spikes, and asked how presentation of sensory white noise
affected baseline tonic and burst firing. We defined bursts
according to classic criteria (Lu et al., 1992; Reinagel et al.,
1999; Swadlow and Gusev, 2001; Lesica et al., 2006;
Whitmire et al., 2016): two or more sequential spikes from a
single unit preceded by at least 100ms of quiescence, and
with at most 4ms between spikes (Fig. 5A, bottom). These
criteria are consistent with the timing of burst spikes result-
ing from de-inactivation of T-type calcium channels after
prolonged hyperpolarization (McCormick, 1992; Llinás and
Steriade, 2006), although we did not confirm this directly via
intracellular recordings. As in S1, we found that the back-
ground stimulus evoked stimulus-locked firing in VPm (Fig.
5B). Tonic firing rates increased sharply at white noise onset,
and rapidly adapted to late white noise response rates that
were significantly elevated above spontaneous levels (Fig. 5B,
C). Burst rates were very low during spontaneous activity
(Fig. 5B,C), increased sharply at white noise onset, before
decreasing below spontaneous levels in the late response
window (Fig. 5B,C), consistent with inactivation of T-type
calcium channels. We next characterized VPm responses to
sensory features, and the effects of the background stimulus
on these responses. We found that background stimulation
reduced feature-evoked tonic spiking (Fig. 5D,E), but this
adaptive effect was modest in comparison to the adaptation
of S1 RS cells. Adaptation had a more striking effect, how-
ever, on burst firing in individual neurons. Burst firing has
been shown to provide potent synaptic drive to S1 (Sherman,
2001; Swadlow and Gusev, 2001; Swadlow, 2002), and may
therefore be critical for shaping cortical sensory responses.
Yet few studies have explored single-unit VPm sensory
responses during wakefulness, when VPm is likely to be on
average relatively depolarized, and T-type calcium channels
inactivated. We did, in fact, observe feature-evoked bursting,
consistent with previous recordings in awake rats (Whitmire
et al., 2016), although burst spikes constituted a minority
of total feature-evoked spikes in the control condition
(Fig. 5E). Adaptation profoundly reduced bursting, with fea-
ture-evoked burst spikes nearly abolished in the adapted
condition (Fig. 5D,E). Finally, we asked how adaptation
altered synchronous thalamic firing, shown previously to be
crucial for driving downstream cortical targets (Bruno and
Sakmann, 2006; Wang et al., 2010; Bruno, 2011). We thus
generated grand CCGs and counted synchronous spikes
for each stimulus condition, as done previously for S1 cells.
We found that adaptation significantly and substantially
decreased synchronous VPm spike counts for both feature
velocities (Fig. 5F,G). Interestingly, adapted synchronous
spike counts were not significantly different from those of
the hypothetical hybrid condition (Fig. 5G). Thus, unlike S1,
VPm was apparently not subject to mechanisms that actively
de-synchronized firing across thalamic neurons beyond the
degree predicted by loss of rate alone. As such, the loss of
synchrony in this regime of adaptation may be attributable
to weakened synaptic drive from trigeminal neurons
(Castro-Alamancos, 2002; Deschênes et al., 2003; Ganmor et
al., 2010). This is in contrast to previous studies in anesthe-
tized (Wang et al., 2010) and awake (Ollerenshaw et al.,
2014) rats, which demonstrated that sequences of high-ve-
locity stimulus features resulted in a gradual loss of

synchrony greater than that predicted by adaptation of mean
rate alone. This discrepancy may owe to the relatively weak
adapting stimulus we employ here; stronger adapting stimuli
may engage a broader range of mechanisms that serve to
desynchronize VPm firing, possibly including more pro-
found adaptation of trigeminal neurons, and weakened syn-
aptic interactions between VPm and TRN.

In summary, rapid sensory adaptation modestly reduced fea-
ture-evoked tonic spiking in VPm, and substantially reduced
bursting and synchronous spiking. Given the sensitivity of S1 to
bursting and synchronous firing in VPm (Usrey et al., 2000;
Sherman, 2001; Swadlow and Gusev, 2001; Swadlow, 2002; Bruno
and Sakmann, 2006; Wang et al., 2010; Ollerenshaw et al., 2014),
this qualitatively predicts that cortical responses will be smaller in
amplitude and less synchronous across neurons, as observed in
experiment. Further, the more substantial loss of synchronous fir-
ing in S1 than in VPm demonstrates an apparent enhancement of
adaptation-induced desynchronization from thalamus to cortex.

TC and intracortical synaptic depression contribute little to
S1 sensory adaptation
While the thalamic adaptation we observed likely played a key
role in S1 adaptation, what was the additional contribution from
TC and/or intracortical synaptic depression? Previous anesthe-
tized work has demonstrated greater adaptation of mean evoked
rates in S1 than in VPm (Chung et al., 2002; Khatri et al., 2004;
Gabernet et al., 2005), and this has been interpreted to reflect TC
synaptic depression. However, this may also reflect the sensitivity
of cortex to bursting and synchronous thalamic firing, which we
found to be profoundly adapted by persistent sensory stimulation.
We sought to disentangle the relative contributions of thalamic
response adaptation and TC and/or intracortical synaptic depres-
sion by performing two complementary optogenetic experiments:
one to isolate the contribution from TC synaptic depression, and
one to isolate the contribution from intracortical mechanisms. In
these experiments, we achieved targeted manipulation of either
VPm neurons or TC synapses, without directly manipulating
whisker-responsive POm or TRN neurons, by using a transgenic
mouse (Ai32xNR133; see Materials and Methods) expressing
Channelrhodopsin in VPm/VPl cell bodies, axons, and TC axon
terminals.

In the first experiment, we sought to isolate the contribution
of TC synaptic depression to S1 response adaptation. We did this
by presenting a background optogenetic stimulus that bypassed
the early sensory pathway upstream of VPm, and elevated base-
line VPm rates without elevating S1 rates. We inserted an optoe-
lectrode into VPm and a linear silicon probe into the
topographically-aligned column of S1 in the awake mouse (Fig.
6A; see Materials and Methods), and we randomly interleaved
white noise and LED trials. On LED trials, we elevated baseline
VPm rates by substituting the adapting sensory stimulus with a
step input of blue light to thalamus (Fig. 6B, right). We titrated
the light power such that mean baseline thalamic rates were com-
parable to white noise trials (Fig. 6B,C, top). Importantly, while
the LED significantly increased VPm firing rates (Fig. 6B,C top,
spontaneous vs LED), it did not evoke even a transient increase
in S1 firing rates (Fig. 6B,C, bottom), likely because thalamic
spiking was not sufficiently synchronous to effectively drive cort-
ical targets (Bruno and Sakmann, 2006). As such, this manipula-
tion did not engage activity-dependent intracortical adaptation
mechanisms.

We next inspected the effects of our sensory and optogenetic
manipulations on VPm and S1 sensory feature responses. We
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were interested in the presence or absence of gross adaptive
effects, and so we grouped together tonic and burst spikes in
VPm, and RS and FS cells in S1 for this analysis. Because sensory
adaptation was qualitatively similar for 300°/s and 900°/s fea-
tures, we presented only the 300°/s sensory feature in these
experiments. On LED trials, we maintained a constant light level
during presentation of the sensory feature, to avoid transient
VPm responses to reduction in light power. As shown above,
background sensory stimulation adapted feature responses in
VPm and S1 (Fig. 6D). We next inspected the effects of optoge-
netically-elevated baseline VPm rates on feature responses. If the

“artificial” elevation of baseline VPm rate
adapted TC synapses before delivery of the sen-
sory feature, we would anticipate adapted S1
feature responses on LED trials, despite the
non-adapted VPm feature response. On the
contrary, we observed no significant differences
in S1 feature response rates between the con-
trol and LED conditions (Fig. 6D, bottom).
Importantly, LED presentation did not sig-
nificantly enhance synchronous spike counts
in the VPm feature response relative to con-
trol trials (Fig. 6E), thus ruling out the possi-
ble confound of enhanced feature-evoked
thalamic synchrony masking the effects of
TC synaptic depression. As such, the results
of this first optogenetic experiment suggest
that S1 response adaptation did not largely
reflect TC synaptic depression, but rather a
combination of VPm response adaptation
and intracortical mechanisms.

We next performed a second, complemen-
tary optogenetic experiment to determine the
relative contribution from intracortical mecha-
nisms engaged by the elevation of prefeature
cortical firing rates (e.g., intracortical synaptic
depression, a build-up of intracortical inhibi-
tion, etc.). We positioned an LED-coupled
optic fiber above the cortical surface and
recorded extracellular spiking activity with a
silicon probe array in S1 (Fig. 7A). We per-
formed these experiments in lightly-anesthe-
tized mice, in which we also observed
profound S1 adaptation (Fig. 4), which allowed
additional recording time to titrate light levels
(see Materials and Methods). On each trial, we
presented either a 300°/s sensory feature to the
principal whisker (as described above), or a
“light feature,” which was a brief step input of
light to stimulate TC terminals in the principal
column, with sensory and light features ran-
domly interleaved. In both cases, we presented
the features either in isolation (control trials)
or embedded in a background sensory stimulus
(adapted trials). We recorded from a pool of
208 RS, FS, and multi-units across these experi-
ments. Of these, 121 responded significantly to
the sensory but not the light feature, 0
responded only to the light feature, 71
responded to both, and 16 did not respond to
either (Fig. 7B, inset). For the following analy-
ses, we consider only the units that responded
significantly to both feature types (see
Materials and Methods).

Consistent with the above results for awake and anesthetized
mice, the S1 sensory feature response grand PSTH for pooled RS,
FS, and multi-units exhibited profound sensory adaptation (Fig.
7B, left). If this largely reflected intracortical mechanisms
engaged before feature delivery, we would expect that light fea-
ture responses to be similarly adapted by the background sensory
stimulus, as the light feature precluded VPm response adapta-
tion. Instead, there was comparatively little evidence of adapta-
tion in the S1 grand PSTHs for light feature responses (Fig. 7B,
right). This result also bore out in mean evoked rates: mean rates

Figure 6. Optogenetic elevation of baseline VPm firing rate does not adapt S1 sensory responses. A, Experimental
setup. We recorded extracellular spiking activity from topographically-aligned VPm barreloids and S1 barrels in awake,
head-fixed, transgenic mice expressing Channelrhodopsin in VPm/VPl neurons (see Materials and Methods). B,
Summed spiking activity of all well-isolated, responsive putative VPm (top) and S1 (bottom) units from one example
recording session. Each row indicates spike times of all such simultaneously-recorded units in that brain region on a
single trial. C, Grand mean (6SEM) firing rates for spontaneous activity (“spont”), and during presentation of the
adapting sensory stimulus (white noise) and optogenetic depolarization of VPm (LED), for VPm (top) and S1 (bottom;
*0.005� p, 0.025; **5� 10�4 � p, 5� 10�3; ***p, 5� 10�4). VPm mean6 SEM rate spontaneous: 7.68
6 1.1 Hz, white noise: 11.056 1.99 Hz, LED: 14.276 2.81 Hz; spontaneous versus white noise, W= 37, p= 0.011,
Wilcoxon signed-rank test; spontaneous versus LED: W= 37, p= 0.011; white noise versus LED: W= 102, p= 0.91,
N= 20 units from 6 sessions; S1 spontaneous: 8.876 0.82 Hz, white noise: 16.326 2.05 Hz, LED: 10.036 1.05 Hz;
spontaneous versus white noise: W= 445, p= 5.05� 10�10; spontaneous versus LED: W= 1568.5, p= 0.11; white
noise versus LED: W= 1013, p= 8.42� 10�5, N= 88 units from six sessions. D, left, Grand PSTHs for each stimulus
condition, for VPm (top) and S1 (bottom). Right, Grand mean (6SEM) firing rates for each condition. Asterisks as in
C. VPm mean6 SEM rate control: 29.126 4.82 Hz, adapted: 19.076 3.1 Hz, LED: 36.446 5.35 Hz; control versus
adapted: W = 26, p= 0.003; adapted versus LED: W= 11, p= 4.5� 10�4; control versus LED: W= 55, p= 0.06. S1
control: 27.33 6 2.61 Hz, adapted: 20.91 6 2.47 Hz, LED: 27.82 6 2.79 Hz; control versus adapted: W= 502.5,
p= 1.39� 10�9; adapted versus LED: W= 424, p= 2.86� 10�10; control versus LED: W= 1837, p= 0.89, Wilcoxon
signed-rank test. E, top, Grand VPm CCGs for each stimulus condition. Bands indicate 99.9% confidence intervals (re-
sampling spikes with replacement (see Materials and Methods). Bottom, Synchronous spike counts calculated from
CCGs in (E, top), for each stimulus condition. Error bars indicate 99.9% confidence intervals (re-sampling spikes with
replacement (see Materials and Methods). Mean 699.9% confidence interval synch AP count control: 47.14 6 11.0
spikes/pair, LED: 51.83 6 12.94 spikes/pair, adapted: 20.08 6 8.53 spikes/pair, p� 0.05 control versus LED,
p, 0.001 control versus adapted, re-sampling spikes with replacement, N= 36 pairs from 19 units in 5 sessions.

Wright et al. · Cortical Adaptation duringWakefulness J. Neurosci., June 23, 2021 • 41(25):5421–5439 • 5433



for sensory feature responses were profoundly
adapted (Fig. 7C, left), while light feature
responses were only slightly adapted (Fig. 7C,
right), and the population median normalized
adapted response was near 1 for light feature
responses, but significantly smaller for sensory
feature responses (Fig. 7D).

Importantly, this did not appear to simply
reflect an overwhelmingly strong LED stimulus,
or light-evoked TC synaptic activity that was
unnaturally synchronous across synapses; not
only were evoked rates generally lower for the
light feature than for the sensory feature across all
neurons (Fig. 7B,C), but in exploring a variety of
LED stimulus amplitudes and durations across
experiments, we found that both relatively large-
amplitude and small-amplitude light-evoked
responses were at most only modestly adapted,
and that the degree to which sensory white noise
adapted light-evoked responses was unrelated to
the amplitude of the control response for a given
unit (Fig. 7E). Further, given that we observed no
units that were responsive to the light but not the
sensory feature (Fig. 7B, inset), it is also unlikely
that the light feature responses were driven pri-
marily by TC synapses and/or cortical neurons
that were not responsive to sensory stimulation
(and therefore could not be adapted by sensory
white noise).

We confirmed these observations of spiking ac-
tivity by obtaining in vivo patch clamp recordings
from neurons in S1 of the lightly-anesthetized
mouse (Fig. 7F, left; see Materials and Methods).
We recorded from four neurons that responded to
both sensory and light features. While sensory-
evoked and light-evoked amplitudes varied across
neurons (Fig. 7G, top), light feature responses
were comparatively impervious to sensory adap-
tation. Specifically, for sensory feature responses,
the across-trial median amplitude significantly
decreased for three cells, and the time to response
peak significantly increased for all cells (Fig. 7G,
left; see Materials and Methods), consistent with
the extracellular recordings (Fig. 7B,C). In con-
trast, light feature response amplitudes were
unchanged and the time to peak response did not
increase for any of these cells (Fig. 7G, right).

These two complementary optogenetic experi-
ments together suggest that intracortical mecha-
nisms engaged during prefeature activity, including
TC synaptic depression, contributed little to S1
response adaptation, which in this regime of adapta-
tion appear to primarily reflect the profound loss of
synchronous feature-evoked VPm spiking.

Amodel network identifies synchronous
VPm spikes and robust feedforward
inhibition as key mechanisms underlying S1
response adaptation
We observed that S1 feature response rates were
more profoundly adapted than VPm feature
response rates, and we have proposed that this
reflected the sensitivity of S1 to the adaptive loss
of synchronous VPm spikes. Further, we

Figure 7. S1 responses to direct optogenetic stimulation of TC terminals are not adapted by sensory white noise. A,
Experimental setup for extracellular recordings. S1 spiking activity was recorded in mice lightly-anesthetized with iso-
flurane (see Materials and Methods). These transgenic mice expressed Channelrhodopsin in VPm cell bodies, axons, and
TC axon terminals. An optic fiber positioned above the cortical surface was used to deliver punctate optogenetic stimula-
tion to TC terminals on light feature stimulation trials (see Materials and Methods). B, Grand PSTHs (using all sensory-
responsive single-units and multi-units; see Materials and Methods) for sensory feature (black, left) and light feature
(blue, right) trials, for control (empty histogram) and adapted (filled histogram) conditions. Inset, Number of recorded
units that were significantly responsive to the sensory feature only (“sens only”), the light feature only, both the sensory
and light features (“sens and light”), and not responsive to either (“NR”). C, Across-unit mean (6SEM) punctate-stimu-
lus-evoked firing rates versus stimulus condition for all responsive single-units and multi-units, for sensory feature
(black, left) and light feature (blue, right) stimuli (***p, 0.001, Wilcoxon singed-rank test). Sensory feature mean6
SEM control: 18.38 6 1.27 Hz, adapted: 6.59 6 0.65 Hz, W= 39, p= 1.39� 10�12 N=71 units, Wilcoxon signed-
rank test. Light feature mean 6 SEM control: 11.7 6 0.95 Hz, adapted: 11.38 6 0.99 Hz, W= 987, p=0.19. D,
Distributions of normalized adapted responses for all valid units (see Materials and Methods). Triangles at top denote
population median values (***p, 0.001, Wilcoxon signed-rank test). Population median normalized adapted
response = �0.29 light feature trials, 0.96 sensory feature trials, W= 199, p=3.12� 10�11, Wilcoxon signed-rank
test. E, Normalized adapted responses to the light feature versus across-trial mean light-evoked rate in the control con-
dition for all 71 units that responded to both sensory and light features (with r and p values from Pearson correlation
test). F, left, Experimental setup for in vivo S1 patch clamp recordings in lightly-anesthetized transgenic mice. Right,
Across-trial median membrane potential responses to sensory features (black traces) and light features (blue traces), for
one example S1 neuron. G, Properties of subthreshold responses to sensory features (left) and light features (right): sub-
threshold response amplitude (top), and time from stimulus onset to peak subthreshold response (Tpeak, center) for
each of the four recorded cells. Dark lines connecting pairs of data points indicate significant difference across stimulus
conditions (p, 0.05, Wilcoxon signed-rank test), and light lines indicate non-significance.
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hypothesized that feedforward cortical inhibition that was rela-
tively robust to sensory adaptation helped to dampen feature-
evoked S1 excitatory firing in the adapted condition. In other
words, inhibition increased the sensitivity of cortical excitatory
neurons to adaptation of synchronous VPm spiking. To test the

reasonableness of these assertions, and to identify
the mechanistic basis for robust feedforward inhi-
bition, we implemented a model TC network, and
assessed its ability to reproduce profound, cell-
type-specific adaptation.

We modeled a single S1 barrel as a clustered
network of 800 excitatory and 100 inhibitory LIF
neurons, subject to excitatory inputs from a model
“VPm barreloid” (Fig. 8A). The barreloid was
modeled as 40 independent trains of tonic and
burst spikes, with spike times drawn from the em-
pirical VPm PSTHs. We selected cortical network
and intrinsic neuronal parameters that mimicked
measurements from previous studies, and then
adjusted parameters slightly to ensure stable
ongoing and evoked network activity (see
Materials and Methods). Importantly, we imple-
mented differential TC connectivity, which we
hypothesized might contribute to the robustness
of inhibitory firing to VPm adaptation. This dif-
ferential connectivity consisted of three key com-
ponents motivated by previous experimental
work. First, inhibitory neurons had higher “TC
convergence” (or proportion of VPm neurons that
synapse onto each cortical neuron) than excitatory
neurons (0.75 vs 0.5; Bruno and Simons, 2002).
Second, the baseline and evoked firing rate of each
VPm neuron was drawn from a skewed distribu-
tion, and VPm neurons with the highest rates syn-
apsed exclusively onto inhibitory neurons (Bruno
and Simons, 2002; see Materials and Methods).
Finally, TC synaptic latencies were on average
1ms shorter for inhibitory neurons (Cruikshank
et al., 2007; Kimura et al., 2010). With this archi-
tecture in place, we modeled 50 trials from each
stimulus condition of interest.

We fine-tuned the model parameters to give
qualitatively realistic peak rates for excitatory neu-
rons when VPm spike times were drawn from the
control (unadapted) empirical PSTHs for the
300°/s and 900°/s sensory features (Fig. 8B). Thus,
the excitatory population was appropriately tuned
to the rate and synchrony of thalamic firing. Next,
we repeated the simulations using VPm spikes
drawn from the adapted PSTHs (Fig. 8B, top,
filled PSTH), and found that cortical network
excitatory neurons were in fact profoundly
adapted, despite the only modest reduction in
mean VPm rates (Fig. 8B, center). Further, the
excitatory population was more strongly adapted
than the inhibitory population (Fig. 8B,C). Finally,
as observed in experiment, synchronous spike
counts were significantly reduced in the adapted
condition for excitatory-excitatory (Fig. 8D, left)
and inhibitory-inhibitory (Fig. 8D, right) pairs
(see Materials and Methods), with a more drastic
reduction for excitatory neurons. Thus, the mech-
anisms incorporated in this simple model were
sufficient to qualitatively reproduce our key exper-
imental results.

In these simulations, both the mean VPm rate (Fig. 8B, top)
and VPm synchronous spiking (Fig. 8E, top) were reduced in the
adapted condition. We next assessed the degree to which the loss
in synchronous VPm spikes alone could explain cortical

Figure 8. A TC network model identifies synchronous VPm spikes and feedforward inhibition as key mecha-
nisms underlying response adaptation. A, Model schematic (see Materials and Methods). B, Grand mean PSTHs for
VPm spike times used to stimulate the network (top) and network excitatory and inhibitory neurons, for the con-
trol (empty PSTHs) and adapted (filled PSTHs) conditions. C, Normalized adapted responses for both simulated
stimulus velocities (see Materials and Methods). For each condition, the response is defined to be the peak of the
grand PSTH, and the normalized adapted response is the adapted value divided by the control value. Error bars
indicate 95% confidence intervals from re-sampling neurons with replacement. D, Grand exc-exc (left) and inh-
inh (right) CCGs for 200 randomly-selected pairs of network neurons, for the control (dark line) and adapted
(lighter line) conditions. CCGs normalized to max value in control condition for visualization purposes. E, top,
Grand CCGs for VPm inputs to model in the control (dark line) and adapted (lighter line) conditions (corresponding
to PSTHs in B, top). Bottom, Grand CCGs for VPm inputs in the control (dark line) and reduced synch (lighter line)
conditions, where the reduced synch condition results from manual changes to drawn VPm spike times (see
Materials and Methods). F, Same as in B, but for control and reduced synch simulations. G, top, Grand PSTHs for
various choices of percent shifted VPm spikes. Bottom, Normalized adapted excitatory and inhibitory responses
versus percent of shifted VPm spikes. H, Model schematic for identical TC connectivity network (see Results and
Materials and Methods). I, Grand excitatory (top) and inhibitory (bottom) PSTHs for identical TC connectivity net-
work. J, K, Same as in H, I, but for identical TC connectivity network.
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adaptation. To do this, we repeated the simulations while “man-
ually” manipulating VPm spike times. Specifically, we first drew
VPm spike times from the control PSTHs, and for each spike
that occurred within 5ms of the PSTH peak time, we shifted the
spike to a random higher latency (within ;20ms of the peak)
with 30% probability (see Materials and Methods). This had the
effect of maintaining the mean evoked VPm rate, while reducing
the number of near-coincident pairs of VPm spikes in the early
response (Fig. 8E, bottom, reduced synch condition). We found
that this change alone, which only modestly affected the resulting
VPm grand PSTH (Fig. 8F, top), was sufficient to profoundly
adapt mean excitatory evoked rates (Fig. 8F). Further, excitatory
and inhibitory responses decreased monotonically with percent-
age of shifted VPm spikes, with excitatory cells more sensitive to
this manipulation (Fig. 8G). In other words, a loss of synchro-
nous VPm spiking alone was sufficient to reproduce profound
and differential cortical response adaptation in this network.

Finally, we asked whether robust feedforward inhibition,
mediated in part by differential TC connectivity, contributed to
the adaptation of network excitatory neurons. We modified the
network slightly by setting identical TC convergence and TC
synaptic latency values for excitatory and inhibitory neurons and
eliminating rate-dependent TC connectivity (Fig. 8H). Inhibitory
and excitatory neurons therefore had identical mean TC connec-
tion properties, although differences in intrinsic neuronal prop-
erties and dense excitatory-to-inhibitory connectivity still
allowed for higher mean firing rates in the inhibitory population
(see Materials and Methods). We then slightly reduced the mean
TC synaptic weight to yield reasonable excitatory responses in
the control condition (see Materials and Methods), before
inspecting the responses to adapted VPm inputs. For this net-
work, evoked rates (Fig. 8I, top, J) and synchronous spike counts
(Fig. 8K, left) for excitatory neurons were only modestly adapted
compared with the model with differential TC connectivity, and
the degree of adaptation more closely matched that of the inhibi-
tory population (Fig. 8J,K, right). In other words, the excitatory
population was less sensitive to VPm adaptation when differen-
tial TC connectivity was removed. We used an additional set of
models to further assess the relative importance of each compo-
nent of the differential TC connectivity in the original model.
While each component contributed, we found that the degree of
excitatory adaptation was most sensitive to differences in TC
synaptic latencies (data not shown). Importantly, imposing iden-
tical TC connectivity did not entirely remove differential adapta-
tion, as the intrinsic inhibitory neuronal properties and dense
intracortical connectivity also helped make them comparatively
robust to losses in synchronous spiking in both thalamic and
cortical neurons excitatory neurons (data not shown). This
model thus demonstrates the role of robust feedforward inhibi-
tion, due in part to differential TC connectivity, in shaping the
adaptation of cortical excitatory neurons.

Taken together, these modeling results support our hypotheses
that the profound adaptation of cortical RS cells during wakefulness
represents a loss of synchronous feature-evoked thalamic spikes, in
conjunction with strong feedforward inhibition that is compara-
tively robust to this decrease in feedforward thalamic drive.

Discussion
To determine the nature of rapid cortical sensory adaptation
during wakefulness, we recorded single-unit activity in S1 of the
awake, head-fixed mouse while presenting punctate sensory fea-
tures either in isolation, or embedded in a persistent background

stimulus. To elucidate the mechanistic basis of cortical adapta-
tion, we recorded from putative excitatory and inhibitory cortical
neurons and the lemniscal inputs to S1, while employing a bat-
tery of additional manipulations across the TC circuit. This
approach, in conjunction with a TC network model, allowed us
to infer the contributions from thalamic adaptation, TC synaptic
depression, and intracortical mechanisms.

Previous in vitro and anesthetized work has clearly demon-
strated profound rapid sensory adaptation in sensory cortex
(Lesica et al., 2007; Heiss et al., 2008; Ganmor et al., 2010; Wang
et al., 2010; Cohen-Kashi Malina et al., 2013; Ollerenshaw et al.,
2014; Zheng et al., 2015; Kheradpezhouh et al., 2017), which is
thought to represent the net effects on the circuit of elevated fir-
ing rates. Yet because baseline cortical firing rates are elevated
during wakefulness compared with the anesthetized state
(Greenberg et al., 2008; Vizuete et al., 2012; Aasebø et al., 2017),
it remains an open question how much room is left for fine-tun-
ing by the sensory environment (Castro-Alamancos, 2004).
Here, we demonstrate that cortical sensory responses can indeed
be profoundly adapted during wakefulness. The adaptive
decrease in theoretical feature detectability and synchronous fir-
ing of putative cortical excitatory neurons suggest that down-
stream targets of S1 will be substantially less driven in the
adapted state, which predicts a decrease in perceived feature in-
tensity and a loss of detectability. These observations are consist-
ent with previous behavioral work in rats, which demonstrated
changes in perceptual reporting following repetitive whisker
stimulation (Ollerenshaw et al., 2014; Waiblinger et al., 2015). In
other words, this study supports previous in vitro and anesthe-
tized work suggesting cortical response adaptation could under-
lie perceptual adaptation.

Our observations are also consistent with elements of two
previous studies in awake rats, which demonstrated adaptation
of S1 spiking (Musall et al., 2014) and LFP deflections (Castro-
Alamancos, 2004) during presentation of feature sequences
across a range of animal states. Interestingly, Castro-Alamancos
(2004) showed that the extent of adaptation varied across behav-
ioral states, from profound during quiescence to nearly absent in
the very early stages of training in an active avoidance task (i.e.,
likely during states of hyperarousal). Musall et al. (2014), on the
other hand, showed that the degree of cortical response adapta-
tion was largely unchanged by task engagement. This suggests
that sensory adaptation is likely relevant across much of the con-
tinuum of behavioral states, and that brain state gates adaptation,
but future work is needed to more fully address the relationship
between behavioral state and adaptation. Active sensation is a
particularly important and complex scenario: whisker self-
motion may invoke sensory adaptation via bottom-up inputs
because of re-afference (Yu et al., 2016) and low-amplitude
whisker deflections resulting from surface contacts, but is also
associated with top-down modulation of VPm and S1 state
(Poulet et al., 2012; Poulet and Crochet, 2019). While our study
provides insight into how isolated bottom-up inputs may adapt
sensory representations and percepts, it is not clear how whisk-
ing-related state modulation will gate this process.

We next sought to identify the mechanistic basis for S1
response adaptation. One body of literature implicates TC synap-
tic depression (Castro-Alamancos and Oldford, 2002; Chung et
al., 2002; Gabernet et al., 2005; Cruikshank et al., 2010), while
our previous work points to adaptation of thalamic spike timing
(Wang et al., 2010; Ollerenshaw et al., 2014; Whitmire et al.,
2016), but both viewpoints have originated largely from in vitro
or anesthetized preparations. Our results suggest cortical
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response adaptation is largely because of thalamic response adap-
tation in the regime we explored here. First, adaptation pro-
foundly reduced single-unit bursting and the rate of feature-
evoked synchronous spikes in VPm, likely because of a combina-
tion of persistent VPm depolarization (Whitmire et al., 2016)
and adapted inputs from trigeminal neurons (Castro-
Alamancos, 2002; Deschênes et al., 2003; Ganmor et al., 2010),
which predicts attenuated cortical firing (Swadlow and Gusev,
2001; Bruno and Sakmann, 2006; Wang et al., 2010; Ollerenshaw
et al., 2014). Further, optogenetic elevation of baseline VPm rates
did not adapt S1 feature responses, and background sensory
stimulation had little effect on S1 responses to direct TC terminal
stimulation. Finally, our modeling demonstrated that modest
reductions in synchronous VPm spiking alone predicted pro-
found cortical adaptation. Taken together, these results therefore
demonstrate for the first time in the awake animal the sensitivity
of cortex to thalamic spike timing in the context of sensory adap-
tation, and suggest that synaptic depression contributes little to
the observed S1 feature response attenuation.

This apparent lack of TC synaptic depression appears to con-
tradict the results of previous anesthetized and in vitro studies
(Castro-Alamancos and Oldford, 2002; Chung et al., 2002;
Gabernet et al., 2005; Cruikshank et al., 2010). We believe that
this reflects a difference in the strength of adapting stimuli.
Specifically, these previous studies used adapting sequences of
high-velocity, punctate sensory stimuli and/or electrical stimula-
tion. Here, we employed a relatively low-amplitude white noise
adapting stimulus, to emulate small-amplitude whisker micro-
motions that occur during whisking across textured surfaces
(Jadhav and Feldman, 2010). In terms of total power (Zheng et
al., 2015), this white noise stimulus is many times weaker than
the adapting stimuli used in many previous studies (data not
shown). This likely adapts the TC circuit to a lesser degree than
punctate stimulus trains, which may explain the apparent contra-
diction with previous work. This may also explain why we did
not observe more pronounced adaptation of FS units, which has
been shown to reflect stronger adaptation of TC synapses onto
inhibitory neurons (Gabernet et al., 2005). It is possible that
stronger adapting stimuli will generally engage a broader range
of adaptive mechanisms than we observed here, with TC/intra-
cortical synaptic depression playing more prominent roles in
regimes of more profound adaptation. It is also unclear whether
sensory white noise presented during wakefulness can alter
aspects of cortical sensory coding not explored here [such as
input-output relationships (Maravall et al., 2007) and response
tuning curves (Wang et al., 2010)], and whether adaptation of
thalamic synchrony is sufficient to explain such changes. Future
work probing a range of adapting stimulus strengths and effects
can investigate such questions.

While thalamic feature response adaptation appeared neces-
sary for S1 adaptation, it did not explain the differential adapta-
tion of RS and FS cells during wakefulness. In other words, RS
and FS cells provided different read-outs of feature-evoked tha-
lamic spiking. In contrast, RS feature responses were no more
adapted than FS rates under isoflurane anesthesia, which has
been shown to disproportionately weaken cortical inhibition
(Haider et al., 2013; Taub et al., 2013). This suggested to us that
feedforward inhibition contributed to the adaptation of RS cells
during wakefulness. We explored this possibility with a network
model, in which we implemented cell-type-specific TC connec-
tivity motivated by previous experimental work (Bruno and
Simons, 2002). We found that S1 response adaptation did largely
reflect a loss of synchronous VPm spikes, but that the profound

and differential adaptation of excitatory neurons also required
several additional mechanisms, including cell-type-specific TC
connectivity. Taken together, these experimental and modeling
results suggest a TC circuit basis for the observed S1 adaptation,
involving a profound loss of synchronous feedforward excitation,
and a comparatively modest decrease in dampening feedforward
inhibition.

This adaptive shift in the feedforward E/I balance toward in-
hibition has implications for cortical function and perception
beyond attenuation of response amplitudes and perceived stimu-
lus intensities. For example, previous experimental work has
demonstrated that the relative strength and/or timing of cortical
excitation and inhibition contributes to the direction-selectivity
(Wilent and Contreras, 2005) and receptive field properties
(Kyriazi and Simons, 1993; Bruno and Simons, 2002; Ramirez et
al., 2014) of excitatory neurons, maintains relatively low excita-
tory firing rates during bouts of whisking (Yu et al., 2016;
Gutnisky et al., 2017), shapes the “window of integration” during
which excitatory neurons integrate excitatory synaptic inputs
and depolarize toward threshold (Gabernet et al., 2005; Wilent
and Contreras, 2005), and generally serves to “dampen” tha-
lamic-evoked spiking in the excitatory subnetwork (Pinto et al.,
2003). TC adaptation exists on a continuum (Wang et al., 2010;
Zheng et al., 2015), and more moderate levels of adaptation than
we imposed here may result in moderately attenuated excitatory
firing that is sharpened in space and time by comparatively non-
adapted inhibition, resulting in more faithful spatiotemporal
cortical representations of complex sensory stimuli. Future
experiments exploring regimes of weaker adaptation and using
more complex single-whisker and multi-whisker stimulation can
explore these possibilities.

In summary, these results demonstrate the effects of rapid
sensory adaptation on the early sensory pathway during wakeful-
ness, culminating in profound adaptation of primary sensory
cortex, which likely underlies perceptual adaptation on this time-
scale. Further, they highlight the relative importance of thalamic
gating in establishing cortical adaptation, through population
timing control of thalamic drive and the differential engagement
of the inhibitory cortical subpopulation.
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