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Patch clamp electrophysiology is a common technique used in neuroscience to understand individual neuron
behavior, allowing one to record current and voltage changes with superior spatiotemporal resolution com-
pared with most electrophysiology methods. While patch clamp experiments produce high fidelity electrophys-
iology data, the technique is onerous and labor intensive. Despite the emergence of patch clamp systems that
automate key stages in the typical patch clamp procedure, full automation remains elusive. Patch clamp pip-
ettes can miss the target cell during automated experiments because of positioning errors in the robotic ma-
nipulators, which can easily exceed the diameter of a neuron. Further, when patching in acute brain slices, the
inherent light scattering from non-uniform brain tissue can complicate pipette tip identification. We present a
convolutional neural network (CNN), based on ResNet101, to identify and correct pipette positioning errors be-
fore each patch clamp attempt, thereby preventing the deleterious effects of and accumulation of positioning
errors. This deep-learning-based pipette detection method enabled superior localization of the pipette within
0.62 = 0.58 um, resulting in improved cell detection success rate and whole-cell patch clamp success rates by

Significance Statement

The patch clamp technique, while difficult and time intensive, remains necessary for fully elucidating individ-
ual neuron behavior. This deep-learning based method for pipette correction will improve the yield and
speed of automated patch clamp experiments, enabling higher throughput and real-time pipette correction
during fully automated patch clamp experiments.
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71% and 59%, respectively, compared with the state-of-the-art cross-correlation method. Furthermore, this
technique reduced the average time for pipette correction by 81%. This technique enables real-time correction
of pipette position during patch clamp experiments with similar accuracy and quality of recording to manual
patch clamp, making notable progress toward full human-out-of-the-loop automation for patch clamp

electrophysiology.

Key words: automated; CNN; deep learning; electrophysiology; machine learning; patch clamp

Introduction

Characterizing neuronal function on a single cell level is
crucial to unraveling the biological mechanisms underlying
brain activity. One of the most important techniques used in
neuroscience to understand individual neuron behavior is
patch clamp electrophysiology. This Nobel prize-winning
technique allows one to record subthreshold current and volt-
age changes, enabling scientists to better understand neuro-
nal communication. While optical methods offer a promising
non-invasive method to study single neurons (Hochbaum et
al., 2014; Kiskinis et al., 2018; Adam et al., 2019; Fan et al,,
2020), their reliance on relative measurements rather than ab-
solute voltage or current and suboptimal spatiotemporal re-
solution still require patch clamp to validate recordings of
individual cellular behavior.

Typically, an in vitro patch clamp experiment is per-
formed as follows: one views a brain slice under a micro-
scope, manually maneuvers and delicately places a 1- to
2-um tip of a glass pipette into contact with a 10-pm di-
ameter cell membrane, creates a high-resistance seal be-
tween the pipette and cell membrane, and breaks into the
cell to create a whole-cell configuration. This technique is
immensely time intensive even for a skilled expert under
optimal conditions. To improve the throughput and yield
of these essential yet challenging experiments, several
groups have invented automated patch clamp rigs for
both in vitro (Wu et al., 2016; Kolb et al., 2019; Lewallen et
al., 2019) and in vivo (Kodandaramaiah et al., 2012; Kolb
et al., 2013; Annecchino et al., 2017; Stoy et al., 2017;
Suk et al., 2017; Holst et al., 2019) electrophysiology, in-
cluding a handful of techniques developed specifically for
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automated pipette localization (Long et al., 2015; Koos et
al., 2017, 2021) and cell tracking (Lee et al., 2018).

One of the most challenging steps to automate in these
rigs is the accurate and repeatable placement of the pip-
ette tip close to the membrane of a cell (Long et al., 2015).
Conventionally, patch pipettes are controlled by micro-
manipulators that have random and systematic errors on
the order of 10um (Kolb et al., 2019) when repeatedly
moving to and from the same location. A major drawback
for previous pipette tip localization techniques (Long et
al., 2015; Koos et al., 2017, 2021) is that the accuracy is
significantly reduced when real-world background lighting
variation and noise is introduced. Light scattering from
the brain tissue induces significant noise in the image and
renders these methods practically useless since they rely
on a clear image of the pipette in acute slice experiments,
despite their success in cultured cell experiments. To
overcome this obstacle, we implemented a convolutional
neural network (CNN), ResNet101, to automatically iden-
tify and correct the pipette tip localization error for auto-
mated in vitro patch clamp experiments. This method will
not only improve the precise placement of the pipette
near the cell membrane, but also reduce the time required
to localize the pipette tip over a cell and therefore improve
the overall throughput and efficiency of the automated
patch clamp process.

Materials and Methods

Coordinate system and definition of errors

To accurately identify the pipette location for patch
clamp experiments, we defined a coordinate system rela-
tive to the objective location so that the center of the field
of view, with the pipette tip in focus, was considered the
origin. Hereafter, the view of the brain slice under the mi-
croscope will be referred to as the xy-plane. The z direc-
tion is defined by the vertical distance perpendicular to
that plane, with z=0 at the location where the pipette was
perfectly in focus.

There were three types of positioning errors addressed,
as shown in Figure 1A. When moving the pipette, the pip-
ette is commanded to move to the desired position
(white), typically coincident with the center of a cell (x,y)cen
in automated patch clamp experiments. Because of ran-
dom and systematic errors in the three-axis manipulators,
the true pipette position (blue) is not equal to the desired
position, resulting in the true pipette error (¢, t,, ;). We
can estimate the true position of the pipette with the CNN,
resulting in the computed CNN position (red). This CNN
position has CNN error vector (Cx, ¢, C;), defined by the
difference between the true pipette position and the CNN
position. Since we cannot determine the true pipette
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Figure 1. A, Schematic of the error nomenclature used in this work. B, Example images of the CNN identifying the pipette tip over a
brain slice. C, Error distribution of neural network testing dataset n =300 images (red) compared with the true pipette error after moving to
the cleaning bath for n=32 images (blue). D, Convergence of true pipette error magnitude using the CNN as the measurement feedback
in the (top) xy-plane and (bottom) z direction. The black dotted lines indicate appropriate error ranges for patch clamp experiments, at 2.5
mm in the xy-plane (half the diameter of a typical cell) and 3 mm in the z direction. The box width indicates the first and third quartiles, the
white line indicates the median, and the whiskers of the box plot indicate the most extreme, non-outlier data points. E, Spatial representa-
tion of pipette tip locations after the second iteration of using the CNN for correction in the (top) xy-plane and (bottom) z direction. Black

dotted lines indicate the range of one and 2 SDs.

position during an automated patch clamp experiment,
we must use the CNN position as a feedback signal.
Thus, we use the difference between the desired position
and the CNN position, called the measured error
(mix, M, m,), to correct the pipette’s position.

Image collection

The image datasets used for training, validation, and
testing in this work consisted of 1024 x 1280 eight-bit raw
images. We used a standard electrophysiology setup
(SliceScope Pro 3000, Scientifica Ltd) with PatchStar mi-
cromanipulators at a 24° approach angle. We used a 40 x
objective (LUMPFLFL40XW/IR, NA 0.8, Olympus) and
Rolera Bolt camera (Qlmaging), illuminated under DIC
with an infrared light-emitting diode (Scientfica). The re-
sulting field of view was 116 x 92 um. All animal procedures
were done in accordance with the National Institutes of
Health Guide for the Care and Use of Laboratory Animals
and the Georgia Institute of Technology animal care com-
mittee’s regulations.

Neural network training, validation, and testing data
To construct a representative dataset of pipette images,
images of 3-5 MQ (1- to 2-um diameter tip) pipettes were
collected over a plain background as well as with a brain
slice. The motivation for this is to ensure that the network
would be robust enough to identify pipettes in both sce-
narios, if necessary. The ground truth annotation process
began by sending a pipette to a computer-generated
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randomized location in the xy-plane (=27 um). The user
manually annotated the location of the pipette tip, in pix-
els, and confirmed the pipette was in focus so that the
pipette could be imaged at fixed intervals along the z-axis
at this position in the xy-plane. The pipette would then au-
tomatically move down (only in the z direction) with a con-
stant step size to a random lower limit distance of up to
100 um, collecting images at each step and recording the
manually annotated xy location and prescribed z location
(based on step size) as an (x,y,z) coordinate in pixels. The
step sizes were constant for each xy location, but
randomized (within 5-20 um) in between. Once at the
lower limit distance, the pipette would return to the in-
focus position (Z=0) at the same xy location. To ensure
that the pipette tip location was accurate, the user would
again manually annotate the tip, saving the (x,y) coordi-
nate in pixels, while in focus. The pipette would then step
in the positive z direction, collecting images and recording
coordinates at each step until reaching an upper limit dis-
tance. A total of 6678 raw annotated images were cap-
tured for training, validation, and testing datasets. All
training and testing data will be available at https://
autopatcher.org/.

Image preprocessing

All images used for training and validation were prepro-
cessed using contrast stretching (Gonzalez and Woods,
2018) to improve the ability to identify the pipette tip. To
accomplish this, we calculated the average (x) and SDs
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(o) of the pixel intensities of each image and mapped the
original pixel values to the range defined by (x*20) for
each image individually. This mapping improved the con-
trast by reducing the range of pixel intensities, thereby
making a smaller range of pixel intensities more. Any pixel
intensity that was outside the range of [0,1] after mapping
was set to 0 or 1, respectively. The images were then
cropped to a square from the center and downsized to
224 x 224 for use with the CNN. These images were then
transformed to artificially increase the training dataset,
making the network more robust to different orientations
of the pipette. The images, and their corresponding pip-
ette tip location annotations, were flipped horizontally,
vertically, and both horizontally and vertically. These three
augmentations resulted in a total training dataset of
24,747 images and a validation dataset of 765 images.
The test images underwent the same preprocessing, but
no augmentations, resulting in a total of 300 test images.
All preprocessing and network training was done using
MATLAB 2020a and all patch clamp experiments were
done with MATLAB and LabVIEW programs.

CNN training

The pretrained network model, ResNet101, was used
as the basis for this work. ResNet101 is a CNN, 101 layers
deep, that is trained for classification problems. The resid-
ual network family is known for performing well in classifi-
cation challenges because the depth of these CNNs lead
to superior performance (Zhang et al., 2018). Here, we
wanted to predict the (x,y,z) location of the pipette tip
based on an image. To accomplish this, we replaced the
final three layers of the ResNet101 architecture with a fully
connected layer and a regression layer (Lathuiliere et al.,
2020). This allowed us to define the output as a continu-
ous 3 x 1 vector, corresponding to the (x,y,z) location of
the pipette tip.

The training options are summarized in Table 1. Of the
optimizers available in the MATLAB Deep Learning
Toolbox, the rmsprop (root mean square propagation) op-
timizer, or loss function, has reported the greatest accu-
racy (Vani and Rao, 2019). The mini batch size should be
a power of 2 and maximized for accuracy (Goodfellow et
al.,, 2016). While computer RAM availability was limited
during training, we determined a mini batch size of 16 was
suitable for this application. The number of epochs was
determined experimentally, aiming to minimize root mean
squared error (RMSE) during training while maximizing
number of epochs to ensure sufficient adjusting of the
CNN'’s weights. It is convention to have a dynamic learn-
ing rate, so the learn rate schedule was set to piecewise,
where the learn rate began at the initial learn rate and mo-
notonically decreased by the learn rate drop factor after
each drop period (in epochs; Bengio, 2012). Bengio rec-
ommended beginning with a large learning rate and re-
ducing the rate if the training loss does not converge.
After testing a few different initial learn rates and drop
factors, we found a suitable learn rate schedule to fol-
low. The validation frequency and patience were set to
their default values as suggested by MATLAB (The
MathWorks, 2020). We used a Dell Precision 5540
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Table 1: CNN training options
Training option Setting
Solver rmsprop
Mini batch size 16
Max epochs 60
Initial learn rate 1e-4
Learn rate schedule Piecewise
Learn rate drop factor 0.09
Learn rate drop period 10
Validation frequency 50
Validation patience Inf
Execution environment gpu
Shuffle Every epoch

(NVIDIA GeForce GTX 1080 GPU, Intel(R) Core(TM) i7-
9850H CPU @ 2.60 GHz, 32 GB RAM, Windows 10, 64-
bit) to train, validate, and test the CNN. The validation
data were shuffled with each epoch to prevent the CNN
from over-fitting to the training and validation sets.

CNN testing

To evaluate the accuracy of the CNN pipette tip identifica-
tion used with an iterative proportional feedback controller,
we performed a series of experiments over acute brain sli-
ces. Specifically, a LabVIEW program randomized the initial
pipette location in the field of view (within =27 pm in the xy-
plane and = 6 um in the z direction). The range of training
data in the z direction was limited to 6 um since pipette lo-
calization error both near the edges of the field of view and
out of focus was not observed; thus, did not warrant the ex-
cess training data. The CNN used the current image to de-
termine the position of the pipette tip. From that CNN
position, the measured error vector was calculated from the
origin (center of the field of view, in focus) and used to cor-
rect the pipette location back to the origin. The CNN-based
pipette tip identification algorithm was run recursively for a
predetermined number of iterations (1-4). To determine the
true pipette error after iterative correction, the pipette tip
was then manually moved to the origin and the change in
the manipulator position was saved as the true pipette error.

Patch clamp experiments

We ran automated patch clamp experiments using a
standard electrophysiology rig with four PatchStar microma-
nipulators on a universal motorized stage (Scientifica, Ltd).
We used a peristaltic pump (120S/DV, Watson-Marlow) to
perfuse the brain slices with buffer solution. The Multiclamp
700b amplifier (Molecular Devices) and USB-6221 OEM
data acquisition board (National Instruments) to collect re-
cordings. We used a pressure control box (Neuromatic
Devices) to regulate internal pipette pressure as well as a
custom machined chamber with a smaller side chamber for
cleaning solution. We followed the cleaning protocol as sug-
gested by Kolb et al. (2016); however, we did not include
rinsing in the cleaning protocol because recent literature
found that there is no impediment to the whole-cell yield or
quality of recording (C. Landry, M. Yip, I. Kolb, WA. Stoy, M.
M. Gonzalez, C.R. Forest, unpublished observation). We
compared the state-of-the-art cross-correlation method for
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Table 2: CNN error from test dataset

Error C (um) o (um)
Cx 0.39 0.35
cy 0.39 0.37
Cz 0.83 0.88
c| 1.13 0.88

pipette detection (Kolb et al., 2019) to the CNN method pre-
sented here in two different sets of experiments. In order to
remove extraneous confounding variables, none of the
patch clamp experiments included the cell tracking algo-
rithm used by Kolb et al. (2019), so that any variation be-
cause of cell tracking would not affect the success rates of
the two pipette identification methods.

Code accessibility

The code used to train and test the network is included
as Extended Data 1, and is also available at https://github.
com/mmgxw3/pipetteFindingCNN.

Statistical analysis

To determine statistical significance in success rates,
we used the Fischer’s exact test. For the comparison be-
tween groups, we used a one-way ANOVA test, and a
Tukey’s HSD test. To test for normality, we used a two-
sided 2 test that combines skew and kurtosis to test for
normality (D’Agostino, 1971; D’Agostino and Pearson,
1973).

Results

Validation of pipette position identification

To determine whether the network could accurately
identify the pipette tip position over a brain slice, we
tested the network on a set of 300 test images, manually
annotated with ground truth positions. Representative
test images of the pipette over a brain slice, with the CNN
position indicated in red, are shown in Figure 1B. It is cru-
cial that the CNN errors, C, are smaller than the true pip-
ette errors, t, that accumulate during an experiment to
ensure that the pipette position error will converge. To
demonstrate that the CNN errors, ¢, are smaller and more
repeatable than the pipette errors from moving to the
cleaning bath and back to the sample, ?, these two distri-
butions along each axis are displayed in Figure 1C. The
mean absolute errors and SDs of the CNN errors for each
of the axes are shown in Table 2.

To ensure that the CNN successfully corrected the pip-
ette tip position, we evaluated the network’s ability to
converge using the previously described testing work-
flow. The magnitude of the true pipette error after one to
four iterations in the xy-plane (|t;y |) and z direction (|t;|) are
plotted in Figure 1D. While there was a significant differ-
ence between the first and second iterations (p =0.001
Tukey’s HSD test), there was no statistical significant dif-
ference between the second and third iterations in the xy-
plane (p =0.49 Tukey’s HSD test). After the second cor-
rection, 62% of the attempts were within 1 SD (+0.31 um)
of the target location in the xy-plane (p =0.016 D’Agostino
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Figure 2. Comparing (A) pipette detection, cell detection, and
whole-cell success rates and (B) time required for cross-corre-
lation and CNN methods (n = 32 and = 36, respectively). The
box width indicates the first and third quartiles, the white line in-
dicates the median, and the whiskers of the box plot indicate
the most extreme, non-outlier data points. Using Fischer's
exact test; *p <0.05, **p <0.001.

test for normality, « = 0.05), and 86% of the attempts
were within 2 SDs (=0.62 um), as indicated by the circles
in Figure 1E. Since the network was able to correct the
pipette tip to less than approximately half the diameter of
a typical cell (10 um) in the xy-plane with only two itera-
tions of the CNN, we only corrected the pipette position
twice for implementation in automated patch clamp ex-
periments. The discretization that is apparent along the y-
axis is the step size of the micromanipulators, indicating
we are approaching the stepper motor encoder resolu-
tion. In the z direction, 64% of attempts were within 1 SD
(0.60 um) of the target location (p =0.026 D’Agostino test
for normality, « = 0.05) and 84% of the attempts were
within 2 SDs (1.2 um), which is an acceptable range that
we believed would not impair the ability of the pipette to
find and patch clamp a cell. The accuracy in the z direc-
tion was less crucial since the approach method is to de-
scend the pipette from 15 um above the cell.

Automated patch clamp experiments

We compared the success rates of the CNN method
and the state-of-the-art cross-correlation method on pip-
ette detection, cell detection, and whole-cell recording.
Success rates are defined as a fraction of all attempts
using the same pipette detection method, independent of
whether the previous steps were successful. Success is
defined for each of the steps as follows: pipette detection
is considered successful when the pipette position can be
identified and corrected based on that identification. Cell
detection is considered successful when the pipette re-
sistance increases 0.2 M(Q) over three consecutive de-
scending 1-um steps. Whole-cell patch clamp recording
is defined by successful cell detection, gigaseal, and
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Figure 3. A, Example image of a pipette on a neuron during a whole-cell recording. B, Distributions of access resistance, mem-
brane capacitance, and membrane resistance for n=23 successful whole-cell patch clamp recordings using the CNN. The white
lines indicate the median, the width of the boxes indicates the first and third quartiles, and the whiskers indicate the range of the
data. C, Representative current clamp trace with current injection. D, Representative voltage clamp trace.

break-in. When using the CNN method, two corrections
were done after the pipette is brought into the field of
view, as previously described. All experiments were done
over 5d, using eight slices from five mice. The numbers of
attempts with each method are 32 and 36 for the cross-
correlation and CNN methods, respectively. These experi-
ments were done independently, but prepared using the
same protocols and solutions to reduce variability in slice
health.

The pipette detection, cell detection, and whole-cell
success rates using cross-correlation were 66%, 59%,
and 37%, respectively (n=32). The pipette detection, cell
detection, and whole-cell success rates using the CNN
were 100%, 92%, and 64 %, respectively (n=36). These
results are summarized in Figure 2A. A Fischer’s exact
test of the results indicate that the CNN improved the pip-
ette detection success rate by 52% (p=8e-5 Fischer’s
exact test), the cell detection success rate by 54%
(p=0.001 Fischer’s exact test) and whole-cell success
rate by 70% (p =0.05 Fischer’s exact test). Moreover, the
CNN method could reliably identify the pipette position re-
gardless of the background noise in the image within
2.71£0.30 s, 81% faster than the average time of the
cross-correlation method, as shown in Figure 2B.

Electrophysiology data

The patch clamp experiments done with the CNN
method vyielded both voltage and current clamp data
comparable to the quality of a manual patch clamp ex-
pert. An example image of the pipette placed on the cell is
shown in Figure 3A. The whole-cell recording protocol
used was the same as that of Kolb et al. (2019). The distri-
butions of access resistance, membrane capacitance,
and membrane resistance are shown in Figure 3B. The
mean access resistance for recordings performed with
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the CNN was 14.1 MQ, well within the accepted range
among manual patch clamp experts (<40 MQ; Kolb et al.,
2019). A representative current clamp trace and the corre-
sponding input current injection are displayed in Figure
3C. A voltage clamp trace is shown in Figure 3D.

Discussion

One of the primary disadvantages of using the previ-
ously reported methods for pipette detection is the lack of
reliability. With the cross-correlation method, the pipette
tip could be identified for 66% of attempts (n=32), failing
because of the difference between the template image
and the background noise from the brain slice (Kolb et al.,
2019). The deep learning-based pipette detection method
presented here offers an accurate and robust method for
identifying the pipette tip position in automated patch
clamp experiments both over a clear background as well
as above a brain slice. Other methods of pipette tip identi-
fication have reported accuracy of 12.06 = 4.3 um (Long
et al., 2015), 3.53 £2.47 um (Koos et al., 2017), and
0.99 * 0.55 um (Koos et al., 2021). We reduced the 3D po-
sitioning error, using two iterations of our CNN method, to
0.62 = 0.58 um. The CNN can more reliably identify the
pipette location in the xy-plane compared with the z-axis.
This difference in error distributions is likely because of
the fact that small changes of the pipette position in the z
direction (moving into and out of focus) are less clearly
observable when viewing the pipette under the micro-
scope, especially when over a brain slice. However, de-
spite this inherent ambiguity in the pipette tip position, the
errors in the z direction are still significantly lower than
previously reported.

By training a CNN to correct the pipette tip position dur-
ing automated patch clamp experiments, we improved
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the success rates of pipette detection to 100% compared
with the 66% success rate for cross-correlation. This abil-
ity to reliably correct the pipette every time it is in the field
of view could be used for automatic calibration or real-
time tracking of the pipette’s location for optimization of
autopatching protocols. This method also improved the
cell detection and whole-cell success rates by 54% and
70%, respectively, compared with the success rates of
the cross-correlation method without use of cell tracking,
demonstrating the importance of the accuracy and ro-
bustness of this crucial step in the autopatching process.
Moreover, this CNN method without cell tracking per-
formed similarly with cells 50-60 um deep (64 %) to that of
Kolb et al. (2019; 60%), who reported a 60% whole-cell
success rate using cross-correlation and cell tracking at
the same cell depth (Kolb et al., 2019). Furthermore, the
average time required to correct the pipette position using
this CNN method is 81% less than the cross-correlation
method, averaging 1.6 s per iteration of the CNN identifi-
cation and movement of manipulators, opening doors to
real-time tracking of the pipette tip during automated
patch clamp experiments.

There were several limits to this study. For one, we only
used one micromanipulator manufacturer (Scientifica).
While there may be different error distributions between
various manufacturers, we anticipate that this method
would still be effective if the modified ResNet101 archi-
tecture was trained with new images specific to the objec-
tive magnification and manipulator. Further, only pipettes
with resistances in the range 3-5 pm were used for train-
ing and testing since this range is standard for patch
clamp experiments in vitro. Pipettes used for other appli-
cations, that are significantly narrower or wider, would
need more training data to ensure the network could reli-
ably identify the tip’s new geometry. Moreover, use with
other objectives would also require collecting new training
data. Finally, we omitted the use of cell tracking in the au-
tomated patch clamp experiments so that we could iso-
late errors and measure success rate independently of
the cell tracking algorithm.

Future work could use this CNN with cell tracking to si-
multaneously monitor and correct the pipette location
with respect to the cell, potentially leading to even greater
whole-cell success rates than previously reported.
Moreover, this dual-monitoring could be used to continu-
ously monitor the access resistance and correct the pip-
ette position to maintain this resistance during longer
duration experiments. Further, the combined monitoring
of the cell and pipette positions may be of great use in
multi-electrode automated patch clamp experiments, in
which the brain tissue moves more from the simultaneous
movement of multiple pipettes in the tissue. This work
represents another significant step toward unmanned ro-
botic patch clamp development.
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