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Repeated sequences of neural activity are a pervasive feature of neural networks in vivo and in vitro. In the hippocampus, sequential firing
of many neurons over periods of 100 –300 ms reoccurs during behavior and during periods of quiescence. However, it is not known
whether the hippocampus produces longer sequences of activity or whether such sequences are restricted to specific network states.
Furthermore, whether long repeated patterns of activity are transmitted to single cells downstream is unclear. To answer these questions,
we recorded intracellularly from hippocampal CA1 of awake, behaving male mice to examine both subthreshold activity and spiking
output in single neurons. In eight of nine recordings, we discovered long (900 ms) reoccurring subthreshold fluctuations or “repeats.”
Repeats generally were high-amplitude, nonoscillatory events reoccurring with 10 ms precision. Using statistical controls, we determined
that repeats occurred more often than would be expected from unstructured network activity (e.g., by chance). Most spikes occurred
during a repeat, and when a repeat contained a spike, the spike reoccurred with precision on the order of �20 ms, showing that long
repeated patterns of subthreshold activity are strongly connected to spike output. Unexpectedly, we found that repeats occurred inde-
pendently of classic hippocampal network states like theta oscillations or sharp-wave ripples. Together, these results reveal surprisingly
long patterns of repeated activity in the hippocampal network that occur nonstochastically, are transmitted to single downstream
neurons, and strongly shape their output. This suggests that the timescale of information transmission in the hippocampal network is
much longer than previously thought.
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Introduction
Precise firing sequences may be a universal, emergent property of
neural networks, having been observed in computational models

of neural networks (Abeles, 1991; Diesmann et al., 1999; Fiete et
al., 2010), neuronal cultures (Rolston et al., 2007), acute brain
slices (MacLean et al., 2005), and in vivo (Shmiel et al., 2005;
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Significance Statement

We found long (�900 ms), repeated, subthreshold patterns of activity in CA1 of awake, behaving mice. These repeated patterns
(“repeats”) occurred more often than expected by chance and with 10 ms precision. Most spikes occurred within repeats and
reoccurred with a precision on the order of 20 ms. Surprisingly, there was no correlation between repeat occurrence and classical
network states such as theta oscillations and sharp-wave ripples. These results provide strong evidence that long patterns of
activity are repeated and transmitted to downstream neurons, suggesting that the hippocampus can generate longer sequences of
repeated activity than previously thought.
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Luczak et al., 2009; Harvey et al., 2012; Miller et al., 2014;
Carrillo-Reid et al., 2016). While sequential activity with fine
temporal precision can represent information over time (Mauk
and Buonomano, 2004), such precise sequences can also be in-
ternally generated, in the absence of an external stimulus (Luczak
and Maclean, 2012). For example, in hippocampal CA3, sequen-
tial firing of neurons on the timescale of 100 –300 ms (or up to
�500 ms in extended replay; Davidson et al., 2009) reoccurs
during behavior and during periods of quiescence (replay or re-
activation, and preplay; Nádasdy et al., 1999; Louie and Wilson,
2001; Dragoi and Tonegawa, 2011), and is tied to sharp-wave
ripples (SWRs), thought to play an important role in learning and
memory (Girardeau et al., 2009; Diekelmann and Born, 2010;
Carr et al., 2011; Jadhav et al., 2012).

Elucidating the duration of repeated sequences and how such
sequences influence downstream activity is important for under-
standing how information is encoded. However, little attention
has been paid to how these sequences are transmitted to neurons
downstream. It remains unclear, for example, whether structured
sequences of repeated spiking activity are transmitted to single
neurons in CA1, in which case single neurons would have long
repeated patterns of subthreshold activity, or whether each
downstream neuron receives inputs only from short segments
of the sequence. Long repeated intracellular patterns would
provide evidence that information transmission to single cells
can occur over long timescales. In turn, since subthreshold
dynamics shape spiking output, the presence of long repeated
intracellular patterns might suggest that information encoded
over such long timescales is further relayed to downstream
neurons. If that is indeed the case, we might expect the spiking
output within repeated intracellular activity to also repeat with
high accuracy, possibly on the order of a few milliseconds. Two
basic questions are how long such repeated sequences last and
whether they are specific to particular network states (e.g., SWRs)
or they represent a more general feature of hippocampal infor-
mation processing.

Prior work has examined repeated patterns of intracellular
activity in vitro and in anesthetized animals (Ikegaya et al., 2004,
2008; Mokeichev et al., 2007); however, whether such repeated
activity occurs in the awake brain is unknown. Ikegaya et al.
(2004) previously recorded activity resembling brief spontaneous
membrane voltage fluctuations, likely isolated postsynaptic inputs,
superimposed on a low-variance stable baseline in acute brain slices.
Similarly, in previous in vivo anesthetized studies (Ikegaya et al.,
2004; Mokeichev et al., 2007) spontaneous intracellular activity
tended to exhibit periodic subthreshold �1 Hz fluctuations
(“up-down states”; Stern et al., 1997), which are associated with
various forms of anesthesia (Contreras and Steriade, 1995; Li et
al., 2009). Both of these activity patterns have a structure that is
not present in awake animals. In neurons of awake, behaving
animals, activity is less stereotyped due to the nonsynchronous
activation of presynaptic populations, neuromodulator action,
and changes in conductance state (Steriade et al., 2001; Haider et
al., 2006; Constantinople and Bruno, 2011). Because of these
differences in membrane voltage dynamics between anesthetized
and awake animals, one cannot assume that the prevalence and
properties of long intracellular repeats identified in anesthetized
animals will also hold in awake animals.

To address these questions, we recorded intracellular neural
activity via patch-clamp recording from neurons in awake mice
running on a spherical treadmill. Intracellular recordings are par-
ticularly suitable for this analysis, both because they remove the
risk of spike misattribution and because the recorded neuron acts
as a microphone, “listening” to all its synaptic patterns, which
could not be recorded extracellularly at the given state of technol-
ogy. Because repeated spiking patterns have been well character-
ized in CA3, we recorded from neurons in hippocampal CA1,
which receives inputs from CA3 as well as entorhinal cortex and
the nucleus reuniens of the thalamus. We searched for sequences
of intracellular activity on timescales at which repeated spiking
activity has previously been described (300 ms) as well as over
longer timescales (900 ms), finding repeated subthreshold activ-
ity occurring at both of these timescales independently of net-
work states. Importantly, such repeats occurred in a variety of
network and behavioral states, suggesting that they are a basic
feature of hippocampal information coding and transmission. To
assess whether the subthreshold patterns occurred by chance, we
compared incidences of repeated patterns in real data to simu-
lated subthreshold activity and shuffled recordings (Mokeichev
et al., 2007). We found there were more incidences of repeated
activity in real data than in these statistical controls. However,
prior studies have found fault with using only statistical control
to establish whether or not repeats are stochastic. In previous
studies, surrogate data generated using stochastic mechanisms
exhibited approximately the same number of repeats as real phys-
iological data, suggesting that repeats in membrane voltage were
likely generated by random processes (Mokeichev et al., 2007).
Similar conclusions have been reached when analyzing spiking
activity (Oram et al., 1999; Roxin et al., 2008). On the other hand,
recent evidence suggests that membrane potential repeat occur-
rence may be significant (nonrandom) in some preparations but
not others, depending strongly on the specifics of the repeat de-
tection method and the recording conditions (Ikegaya et al.,
2008). Therefore, we additionally examined the precision of re-
peated intracellular patterns because the existence of millisecond-
timescale precision in these repeats would contribute to evidence
that these patterns are not random within the physiological time
frame of neuronal information processing. We found that these
subthreshold patterns were repeated with a precision of �10 ms.
Finally, we found that most spikes occur during repeated intra-
cellular activity, providing evidence for a mechanism by which
repeated neural activity patterns could propagate in this network:
82% of spikes occurred within a repeat and spikes within repeats
reoccurred with high precision.

These results are the first evidence of repeated patterns of
intracellular activity on these long timescales in the awake brain.
We show that long patterns of activity are repeated and transmit-
ted to downstream neurons, revealing a long timescale of infor-
mation transmission. The methods used here could be applied
to reveal timescales of information transmission in other brain
circuits.

Materials and Methods
Surgical procedures, behavioral training, electrophysiology. A subset of the
raw data used in this study was used in a previous publication (Singer et al.,
2017); however, all the analyses presented here are new and independent.

All animal procedures were approved by the MIT Committee on An-
imal Care. For a detailed description of the experimental setup, refer to
the study by Singer et al. (2017). Briefly, adult male C57BL/6 mice 8 –12
weeks old were implanted with custom-made headplates. They were left
to recover from the surgery for 1 week and habituated to handling for 1–2
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d before behavioral training began. Animals were trained to run on an 8
inch spherical treadmill, as described by Harvey et al. (2009) in a dimly lit
room. The animals engaged in spontaneous behavior (e.g., running,
grooming). Animals learned to run on the treadmill over �1 week. To
acclimate to the testing environment, on the first 2 d of training the
animals were placed on the spherical treadmill and rewarded with undi-
luted sweetened condensed milk. From the third day until the end of
training (typically 5–7 d), the animals were placed on the treadmill for
increasing amounts of time (30 min to 2 h).

On the day of the experiment, two craniotomies (diameter, 200 – 400
�m) were performed at the following locations (in mm from bregma): 2
caudal, 1.4 lateral for whole-cell recording, and 3.23 anterior, and 0.58
lateral for local field potential (LFP) recording. Standard patch-clamp
pipettes were pulled from filamented glass capillaries using a P97 Pipette
Puller (Sutter Instruments) to a resistance of 4 –9 M�. The intracellular
pipette solution consisted of the following (in mM): 125 potassium glu-
conate, 0.1 CaCl2, 0.6 MgCl2, 1 EGTA, 10 HEPES, 4 Mg ATP, 0.4 Na
GTP, and 8 NaCl. For biocytin staining, 500 �M biocytin, sodium salt
(Invitrogen), was added to the pipette solution. The LFP electrode was
pulled from a 1 mm outer diameter quartz capillary on a laser-based
pipette puller (P2000, Sutter Instruments) to a fine tip, which was then
manually broken back to a diameter of �10 �m. The LFP electrode was
filled with sterile saline.

We deployed a modified Autopatcher robot (Kodandaramaiah et al.,
2012) to perform whole-cell patch-clamp recordings in current-clamp
mode. Series resistance and membrane potential were continuously
monitored. Membrane voltage was acquired at 20 kHz. Simultaneously,
LFP was acquired at 20 kHz and was bandpass filtered (1 Hz to 1 kHz).
Some cells were injected with small amounts of holding current (up to
�100 pA).

Repeat-finding algorithm. The inclusion criteria for the current-clamp
membrane voltage recordings were long duration (�300 s), holding cur-
rent �100 pA, steady membrane potential (�5 mV drift over the dura-
tion of the recording), resting membrane potential of less than �55 mV,
spike amplitude �50 mV, and access resistance �100 M�. In the record-
ings that passed these criteria, spikes were detected and fully extracted
(1.5 ms before the spike and 4.5 ms after) and replaced with NaN (not-
a-number) values. Recordings with any burst firing (defined as three or
more spikes occurring within 15 ms) were then excluded because bursts
of spiking resulted in extended stretches of NaN values, which would bias
the repeat-finding algorithm and the relationship between repeats and
spike rate. Approximately one-half of the otherwise viable recordings
were excluded due to this criterion.

To find repeats, recordings were downsampled to 2 kHz to increase
processing speed. They were then split into template segments of dura-
tion 300, 900, or 2700 ms, with an overlap of 100, 300, and 300 ms,
respectively. Each template was then correlated to the remainder of the
recording. This produced a correlation trace of the same duration as the
original recording. Peaks above a correlation value [Pearson correlation
coefficient (r)] of 0.8 were identified and their temporal locations stored.
We chose a threshold of r � 0.8 because we found that the repeats looked
qualitatively similar to those found in previous studies (Ikegaya et al.,
2004; Mokeichev et al., 2007). In addition, testing of statistical signifi-
cance of the repeats was performed with higher correlation coefficients
(r � 0.84, 0.86, 0.90) with no difference in the resulting conclusions (data
not shown). A peak that occurred within 0.5 s of a previous peak was
discarded to reduce overlap. Repeats were constructed from these peak
locations such that the center of the peak was the center of the repeat. A
single template in many cases had multiple repeats. This repeat-finding
algorithm was parallelized and performed on a high-performance com-
puting cluster for all original and surrogate recordings.

Repeat characterization. We characterized the repeats using SDs and
oscillatory activity. The SD of all repeats was grouped and compared with
100 randomly chosen nonrepeat segments of the recording. Oscillation
activity was quantified by calculating the root mean square deviation of
the spectral density from the 1/f line, a metric we termed D. A large value
for D indicates large oscillatory activity. We confirmed this metric with
the oscillatory index (OSI) metric (Mokeichev et al., 2007); briefly, it is a
unitless quantity representing the amplitude of the first noncentered

peak of an autocorrelation plot. Therefore, a high OSI represents a high
degree of oscillatory activity, regardless of its frequency.

To detect theta oscillations in the LFP, the LFP signal was bandpass
filtered for theta (6 –12 Hz) and delta (1– 4 Hz), and a theta/delta ampli-
tude envelope ratio was computed. Recording segments where the ratio
exceeded 1 SD above mean for at least 1 s were considered theta periods.
To detect SWRs, the LFP was first bandpass filtered (150 –250 Hz), and
an amplitude envelope was calculated. Recording segments where the
amplitude envelope exceeded 4 SDs above mean for at least 15 ms were
considered SWRs. Since spiking events may happen before and after the
detected SWR event (Davidson et al., 2009; Dragoi and Tonegawa, 2011),
portions of the recording 400 ms before and after the envelope peak were
considered part of the SWR. Theta and SWR periods were also visually
inspected to validate these detection algorithms. To determine whether
repeats occurred preferentially during LFP events (theta oscillations and
SWRs), we calculated the total fraction of repeats occurring during a
network state and compared it to the fraction of repeats occurring out-
side that network state. We also tested repeat reoccurrence: given that
templates occur during particular network states, we calculated the prob-
ability of their repeats occurring during the same or a different network
state. For example, the fraction of repeats that occurred during theta that
had templates that occurred during SWRs (SWR¡ theta) was calculated
by (1) identifying the templates that occurred during SWRs, (2) compil-
ing all the repeats of those templates, and (3) calculating the fraction of
those repeats that occurred during theta. A template or repeat was con-
sidered to occur during a network state whether �50% of that template
or repeat occurred during the network state. Repeats could also occur
during certain network states by chance; this chance level was calculated
to be time spent in the network state divided by the total recording
duration.

To compare the spectral content of templates, repeats, and nonrepeats,
we computed the spectral angle (Yuhas, 1992). The spectral angle con-
verts spectral densities of two signals into an f-dimensional vector, where
f is the number of sampled frequencies, and computes the solid angle
between the two vectors. Spectral angles can take values between 0 and
�/2, where values closer to 0 indicate a higher degree of spectral similarity.
Power in specific frequency bands was calculated by bandpass filtering the
recording to the relevant frequencies using finite impulse response filters and
calculating the mean of the squared amplitude of the filtered signal over the
repeat duration (900 ms). To isolate low-frequency components, we used
a low-pass digital Butterworth filter with a cutoff frequency of 100 Hz. To
isolate high-frequency components on the order of �10 ms, we used a
high-pass digital Butterworth filter with a cutoff frequency of 100 Hz. To
compare the incidence of high-frequency fluctuations between repeats
and nonrepeats, segments of the recording that were not parts of any
repeat were chosen randomly. The number of nonrepeat segments cho-
sen was equal to the number of repeats found for each template.

Significance testing of repeats. We used three surrogate recording gen-
eration techniques: (1) synaptic input model; (2) phase shuffling; and
(3) interval shuffling (Mokeichev et al., 2007). For the synaptic model, we
modified a passive stochastic synaptic input model (Paninski et al., 2012)
using the following equation:

V�t � dt	 � V�t	 � � gl�Vl � V�t		 � ge�Ve � V�t		

� gi�Vi � V�t			dt � 	,

where V is the membrane voltage at time t; gl, ge, and gi are leak, excit-
atory, and inhibitory conductances; Vl, Ve, and Vi are the respective
reversal potentials; and 	 is Gaussian white noise, added to model the
recording noise. The excitatory and inhibitory conductances are defined
the same way as in the study by Paninski et al. (2012); the only difference
was in the definition of instantaneous conductances Ne(t) and Ni(t) that
contribute to ge and gi. For excitatory (e) and inhibitory (i) conductances,
we defined Ne(t) (Ni(t)) as the sum of 10 spike trains with spike rate re (ri),
convolved with an 
 conductance function with maximum conductance
ge_max (gi_max) and time constant �e (�i). We used simulated annealing to
optimize seven of these variables, which were determined empirically to
be most relevant to recapitulating aspects of our model (Vl, gl, re, ge_max,
gi_max, �e, �i). The error function for the simulated annealing algorithm

Kolb, Talei Franzesi et al. • Long-Timescale CA1 Inputs in Awake Mice J. Neurosci., February 14, 2018 • 38(7):1821–1834 • 1823



was a combination of the difference in membrane voltage distributions
and the difference in the power spectra between the real data and model
output. Thus, the algorithm produced surrogates that were markedly
similar in power spectrum and membrane voltage to original recordings.
For phase shuffling, the phases of the signal in the frequency domain were
shifted by a random quantity, and a recording was reconstructed by
performing an inverse fast Fourier transform. For interval shuffling, two
voltage levels were defined (one-third and two-thirds of voltage density)
and the recording was split into segments that started and ended at these
crossing points. These subsegments were then restitched, ensuring that
two conditions are met: first, a subsegment must start at the same voltage
level (either one-third or two-thirds level) and slope (up or down) of the
previous subsegment to ensure smooth transitions between subseg-
ments; second, during restitching each subsegment must be as long as
possible without exceeding a maximum length parameter. The maxi-
mum length was set to either 450, 200, or 100 ms (see Results). For each
original recording, 10 surrogates of each type (synaptic input model,
phase shuffling, and interval shuffling) were generated. Due to the com-
putational load of the repeat-finding algorithm, generating many more
surrogates would not be feasible. The number of surrogates we generate
here is consistent with previous studies (Mokeichev et al., 2007) and
produced large effect sizes (see Fig. 5d). The surrogate/real ratio was used
to determine whether more repeats occurred in the real data (ratio, �1)
or in the surrogate data (ratio, �1).

Spike rate and repeat rate. Spike rate and repeat rate over time were
each computed by convolution with a Gaussian kernel (SD, 5 s). To deter-
mine whether spikes occurred preferentially within repeats when accounting
for periods of depolarization and periods of high variability, membrane po-
tential fluctuations above a voltage threshold or variance threshold were
isolated. For membrane voltage, we used the top 10% of each recording and
10 mV below the lowest spike threshold for thresholds. For variance
thresholds, we first used the top 10% of a running variance metric (Wel-
ford, 1962), and, second, we used the average variance of repeats. The
isolated above-threshold fluctuations were then grouped according to
whether they appeared as part of a repeat or not. The normalized spike
rate was calculated as follows: �Rrepeat � Rnonrepeat	/�Rrepeat � Rnonrepeat	
where Rrepeat and Rnonrepeat are the spike rates (in hertz) during the
above-threshold repeats and above-threshold nonrepeats, respectively.
Using the normalized spike rate metric, values �0 indicated spikes oc-
curring preferentially during repeats.

Spike precision within repeats was evaluated using two methods. In
the first method, precision was bootstrapped with spike shuffling. In
every template–repeat pair, we found and recorded the smallest differ-
ence in spike times by calculating every pairwise difference between tem-
plate spike times and repeat spike times, and taking the minimum value.
If the minimum value was below a threshold of 20 ms, we marked the
spike in the repeat as a “precise” spike. As a control, we generated a
random spike train with the same number of spikes as in the original
recording and ran the same analysis using the original repeat data. We
generated 10 shuffled spike trains for each original template–repeat pair.
In the second method, we used spike jittering (Amarasingham et al.,
2012). With this technique, to generate surrogate data, the time of each
spike is resampled within a particular window (jitter time), which we set
to 5–100 ms in 5 ms intervals. For each resampled recording, the number
of precise spikes was calculated. A decrease in the number of precise
spikes as a function of jitter time indicates a disruption in spike timing. A
total of 100 shuffles was performed for every jitter time.

Experimental design and statistical analysis. All statistical analyses were
performed using MATLAB (RRID:SCR_001622). A total of nine intra-
cellular recordings were obtained from eight cells in seven male mice.
Two of the recordings were from the same cell but were not acquired
contiguously. For repeat searching and classification, all nine recordings
were used. In comparing repeat occurrence in network states, only re-
cordings with at least one epoch of the network state or at least one
occurrence of repeats in the network state were considered. For repeat
significance testing, all recordings that had repeats (eight of nine) were
used. For analyses involving comparisons of spike rates and repeat rates,
five recordings that had any spikes and any repeats were used. For spike
precision analysis, four recordings that had at least one spike-containing

template and repeat were used. The normality of data was assessed using
the Anderson–Darling test. In normally distributed data, results are pre-
sented as the mean 
 SD, unless otherwise specified. Otherwise, the
results are presented as the median (range). Statistical details are pre-
sented in text and in figure legends. The Kruskal–Wallis test was used to
test for differences in original and surrogate recording populations. Re-
cordings were then analyzed independently using the Wilcoxon signed-
rank test with a Bonferroni correction to adjust for multiple surrogate
types. Effect size was calculated using Hedge’s g. A value of p � 0.05 was
considered statistically significant unless otherwise specified.

Results
Whole-cell recordings were performed to analyze the incidence
of repeated membrane potential fluctuations in awake, behaving
mice. Recordings were 7 
 1.5 min in duration (minimum, 4.7
min; maximum, 8.6 min). Seven of the cells were putative hip-
pocampal CA1 pyramidal cells, as distinguished by their low fir-
ing rate (0.050 
 0.049 Hz), and one cell had a higher firing rate
(recording 4, 1.14 Hz). Since the results from the cell that had a
higher firing rate did not appear as outliers in any of our analyses,
results were pooled across all cells. The LFP was recorded simultane-
ously with membrane voltage to identify network states (theta oscil-
lations and sharp-wave ripples; Fig. 1a,b). To determine whether
cells showed any evidence of up and down states, the traces and their
membrane voltage distributions were inspected. No cells had a clear
bimodal distribution, indicating the lack of persistent up and down
states (Fig. 1c).

Repeated membrane potential patterns in the awake brain
We first asked, over what timescales is repeated intracellular ac-
tivity observed? To address this, we searched for repeated mem-
brane voltage patterns on the following three timescales: 300, 900,
and 2700 ms. We found many pairs of highly similar recording
segments, which we term template–repeat pairs (Fig. 1d). Repeats
were found on all timescales but not in all recordings: 300-ms-
long repeats were found in nine of nine recordings; 900-ms-long
repeats were found in eight of nine recordings; 2700-ms-long
repeats were found in two of nine recordings (Fig. 1e). Our anal-
ysis focused on 900-ms-long repeats (Fig. 1f) due to their relative
abundance and their long duration relative to previously charac-
terized repeated spiking patterns, and to better allow comparison
to previous characterization of subthreshold patterns of activity
in vitro and in anesthetized animals (Ikegaya et al., 2004, 2008;
Mokeichev et al., 2007).Therefore, in all subsequent analyses,
only the 900-ms-long segments were considered. The template–
repeat pairs exhibited a high degree of correlation (Pearson’s r
values between 0.80 and 0.89 
 0.037; n � 8 recordings with
nonzero repeats; Fig. 1g). We also found many repeats that corre-
lated with templates from other recordings (n � 8 of 8 recordings
with nonzero repeats; Fig. 1h, Table 1), suggesting the presence of
stereotyped intracellular activity across cells in the hippocampus.
Unlike in anesthetized cortex (Mokeichev et al., 2007), the number
of repeats we found varied dramatically between recordings. While
the median number of repeats was 135, we found anywhere from 0
(recording 6) to 7159 repeats (recording 1) in a recording. This vari-
ation was not accounted for by the differences in recording duration;
with a longer recording, the number of candidate repeats is expected
to grow quadratically (Mokeichev et al., 2007), which was not ob-
served in our data (Fig. 2a).

After identifying template–repeat pairs, we asked whether the
repeats shared common features that separated them from non-
repeats. First, we examined the variability in the membrane volt-
age, quantified as the SD of the membrane voltage because at any
given baseline membrane voltage, its variability directly affects
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the probability of spiking, with a larger SD corresponding to an
increased likelihood that the membrane voltage will rise enough
to trigger a spike (Bennett et al., 2013). In the extreme case, with
an SD of 0, the neuron would never spike for any baseline voltage
below spike threshold. At the other extreme, if the SD was very
high, the neuron would very often find itself at a voltage sufficient
for spike initiation. We found that repeats tended to have larger
fluctuations in the membrane potential: they had higher-amplitude

fluctuations than randomly chosen nonrepeat segments of the re-
cording (Fig. 2b,c); however, they were not preferentially depolariz-
ing or hyperpolarizing relative to the mean voltage of each recording
(mean, 0.14 
 0.93 mV; t(7) � 0.44, p � 0.67, Student’s t test; n � 8
recordings with nonzero repeats; effect size, 0.16).

Because our analysis could mistakenly identify oscillations in
the membrane potential as repeats, we asked whether the template–
repeat correlation was the result of oscillations. This was tested by
correlating the Pearson’s r value of the template–repeat pairs to
the deviation of the recording spectrum from 1/f (D metric). No
correlation was found (Fig. 2d,e); this was confirmed with the
OSI metric (median Pearson’s r of OSI vs repeat correlation:
�0.04; p � 0.64, Wilcoxon signed-rank test; n � 8 recordings;
df � 7; effect size, 0.14). Thus, we conclude that repeated patterns
were not due to oscillations in the membrane potential.

To determine whether repeats were more likely to occur dur-
ing a particular network state or behavioral state (e.g., immobility
vs locomotion), we examined the occurrence of repeats during
theta oscillations (correlated with movement) and SWRs (which
occurred when the animal was still) in the LFP. We reasoned that
(1) repeats would occur preferentially during some network
states over others and (2) templates would have repeats that re-

Figure 1. Repeated patterns of membrane voltage are found in CA1 of awake, behaving mice. a, Experimental setup showing the awake, headfixed mouse on a floating Styrofoam ball.
Membrane voltage (Vm ) is recorded with a patch-clamp electrode, LFP is recorded with an extracellular electrode. b, Sample LFP segments showing theta oscillations (left) and two sharp-wave
ripples (right). c, Voltage histograms of all recordings. d, Representative recording (recording 3) with two template–repeat pairs (t1, template 1; r1, repeat of template 1; t2, template 2; r2, repeat
of template 2). Inset (i): sample trace with extracted spikes (marked with *) e, Sample template–repeat pairs of 300 and 2700 ms duration, r shown above traces indicates Pearson’s r between
template and repeat. f, Superimposed 900 ms template–repeat pairs from the recording in d (templates in red and repeats in blue). g, Sample 900 ms template–repeat pairs from recording 1 rank
ordered by r value (i.e., the “first” pair is the most similar repeat in the recording; the “tenth” pair is the tenth best). h, Sample pairs with templates from one recording with repeats found in another
recording.

Table 1. Number of repeats from templates in different recordings

Template from

Repeats in

1 2 3 4 5 6 7 8 9

1 7159 928 1218 1500 221 0 269 206 26
2 954 1012 505 790 218 0 391 263 49
3 1208 483 412 693 49 0 127 76 10
4 0 726 627 1062 119 0 230 172 28
5 224 208 72 139 53 0 64 61 5
6 34 4 0 4 0 0 0 0 0
7 242 284 127 217 46 0 121 96 8
8 268 266 113 208 41 0 68 111 6
9 58 80 19 40 0 0 20 14 8

Templates from (row) recording are used to find repeats in (column) recording. The numbers in the diagonal (e.g.
{1,1}, {2,2}) are the number of repeats in each recording (Fig. 2a).
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occur preferentially during the same network state as the tem-
plates. Surprisingly, neither prediction was supported by the
results. First, the overall rate of repeat occurrence was not signif-
icantly different during theta and SWR occurrence (Fig. 2f,g).
Second, templates occurring during a particular network state in
the LFP had repeats reoccur during that same network state at
chance level (theta ¡ theta: p � 0.94, n � 6, df � 6, effect size �
0.022; SWR ¡ SWR: p � 0.84, n � 8, df � 8, effect size � 0.26;
Wilcoxon signed-rank test). Similarly, templates that occurred
during one state had chance levels of repeats in the other state
(theta¡ SWR: p � 0.56; n � 6; df � 6, effect size � 0.15; SWR¡
theta: p � 0.95, n � 8, df � 8, effect size � 0.19; Wilcoxon
signed-rank test). Thus, we found that repeat occurrence was
independent of network state.

We then asked whether there are specific frequencies that are
uniquely shared among intracellular repeats. We first computed
the spectral densities of all templates, their repeats, and an equal
number of nonrepeats. The spectral content of templates and
their repeats was similar, as expected (Fig. 3a, left). In contrast,
template spectral content differed from nonrepeat spectral con-
tent (Fig. 3a, right). To quantify this difference, we computed the
spectral angle between the spectral density of the template and
that of repeats and nonrepeats. The analysis confirmed that the
templates were more similar (lower spectral angle) in their spec-
tral content to their repeats than to nonrepeats (Fig. 3b). We then
asked what particular frequency bands are different between re-
peats and nonrepeats. Repeats tended to have slow fluctuations;
therefore, we examined power in the 3– 6 Hz range, as well as
theta (6 –10 Hz) and gamma (30 –50 Hz), prominent oscillations
in the hippocampal circuit. The low-frequency (3– 6 Hz) content
in repeats was significantly higher than that in nonrepeats, while

theta (�6 –10 Hz) and gamma (�30 –50 Hz) oscillations were
not significantly different (Fig. 3c).

Although we found that slow fluctuations were more prominent
in repeats, we wondered whether there were also higher-frequency
(�100 Hz) components that repeat with high precision. To address
this, we filtered the recordings to isolate low-frequency (�100 Hz)
or high-frequency (�100 Hz) components from the membrane
voltage. As expected, in the traces filtered to isolate low-fre-
quency membrane potential fluctuations, template–repeat corre-
lations were high (Fig. 4a,b, middle traces). However, even in the
traces filtered to isolate high-frequency fluctuations at the 10 ms
timescale, the correlation between templates and repeats was present
(Fig. 4a,b, bottom traces). We quantified the correlation between
templates and repeats and compared it to the correlation between
templates and 100 randomly chosen nonrepeats, and found that
even on the millisecond timescale (f � 100 Hz), the correlation of
template–repeat pairs was significantly higher than that between
templates and nonrepeats (Fig. 4c). In short, the repeated activity we
discovered had repeated features on the 10 ms timescale.

Establishing significance of repeated patterns using
statistical controls
We then aimed to determine whether these repeated patterns
occur more often than would be expected by chance given that
similarities in signal segments are known to emerge randomly
with sufficiently long analog time series data. To address this
challenge, Mokeichev et al. (2007) previously developed tech-
niques to generate “surrogate” recordings, or time series data that
mimic the overall dynamics of the actual recorded intracellular
activity, but are generated stochastically. If the number of repeats
in the surrogate recordings is smaller than the number of repeats

Figure 2. Repeat classification. a, Relationship between recording duration and the number of repeats (no correlation; Pearson’s r � 0.41; p � 0.27, n � 9 recordings). b, Sample histogram of
standard deviations (SD) for repeats (solid) and 100 randomly chosen nonrepeats (dashed) in one recording (recording 1). In this example, the difference between the SD of the repeats and the
nonrepeats has a median of 2.55 mV (range, �1.59 to 8.17 mV). c, Difference in SDs of repeats and nonrepeats for each recording. In all recordings, the median difference was �0 mV (minimum,
0.76 mV; maximum, 2.56 mV; *p � 0.01, Wilcoxon signed-rank test; n � 8 recordings with nonzero repeats; df � 7; effect sizes: 1.57, 1.47, 0.99, 1.29, 2.2, 1.38, 1.65, and 1.74), indicating that
repeats tend to have a higher SD than nonrepeats. d, Sample scatterplot of the repeat correlation (Pearson’s r) value and spectrum deviation from 1/f (D) from recording 2. e, Correlation (Pearson’s
r) between D and rrepeat for every cell. On the population level, the mean correlation is not different from 0 (r ��0.04 
 0.22; p � 0.60 (n.s.); n � 8 recordings with nonzero repeats; df � 7). f, g,
Occurrence of repeats within and outside of theta (f ) and SWR (g) activity in the LFP. Recordings with at least one identified theta oscillation or SWR episode are shown. Repeats did not occur
preferentially during theta oscillations ( p � 0.47, Wilcoxon signed-rank test; n � 7, df � 7, effect size � 0.27) or SWRs ( p � 0.69, Wilcoxon signed-rank test; n � 6, df � 6; effect size � 0.007).
Box plots show median and first/third quartiles. Whiskers show the data range. rrepeat, repeat correlation (Pearson’s r).
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in the original recordings, there is likely some deterministic struc-
ture in the real recordings that cannot be recapitulated by
stochastic processes. We used the following three techniques to
generate 10 surrogate recordings for every recording: (1) a sto-
chastic model; (2) phase shuffling; and (3) interval shuffling (for
details, see Mokeichev et al., 2007; Fig. 5a,b). For the stochastic
model, we simulated a membrane potential recording such that it
matched the duration, membrane voltage distribution, and power
spectrum of each original recording. For this surrogate type, seven of
eight recordings had significantly fewer repeats in the surrogate
data than in the original data (Fig. 5c,d, blue). For phase shuffling,
we generated surrogate data by transforming the original record-
ing into the frequency domain, randomizing the phase compo-
nents, and converting back to the time domain. For this surrogate
type, six of eight recordings had significantly fewer repeats in the
surrogate data than in the original (Fig. 5c,d, green). For interval
shuffling, we divided each recording in the time domain along
two voltage levels and assembled it back in a random order, pre-
serving contiguous segments up to 100 ms in duration. For this
surrogate type, eight of eight recordings had significantly fewer
repeats in the surrogates than in the original data [Fig. 5c,d, black,
interval shuffled (100 ms)]. However, this surrogate type was
highly sensitive to the duration of preserved contiguous seg-
ments. When using the value 450 ms (equal to the duration of the
searched repeat divided by two, as in the study by Mokeichev et
al., 2007), only one of eight recordings had significantly fewer
repeats in the surrogates than in the original data (Fig. 5e). In fact,
in many of these interval-shuffled recordings, the repeat-finding
algorithm found many more repeats in the surrogate data than in
the original.

Because of the manyfold increase in the number of detected
repeats in the interval-shuffled (450 ms) surrogates, we reasoned
that the interval-shuffling procedure could be subtly adding struc-
ture to the recording, thereby creating repeats. We found that the

key contributor to the increase in the number of detected repeats
following interval shuffling is a slow baseline variation that is
often seen in awake intracellular recordings (Steriade et al., 2001).
The interval-shuffling method works by splitting the recording
into short segments along two voltage levels, representing one-
third and two-thirds of the voltage distribution. The short seg-
ments are kept contiguous until they exceed a duration threshold,
creating long segments, which are then “restitched” along the
one-third and two-thirds levels. With slow baseline variation, the
one-third and two-thirds levels become sufficiently separated
such that there are few transition segments (i.e., segments that
start on the one-third level and end on the two-thirds level or vice
versa). Instead, there are comparatively more segments that start
and end on the same level. This makes it likely that the interval-
shuffled recording becomes structured like a noisy digital signal,
with the one-third and two-thirds levels serving as the “high” and
“low” levels of the signal (Fig. 5f). To test this hypothesis, we
injected one template and its repeats (Fig. 5g) into a surrogate
recording (Fig. 5h) to create a new artificial recording with a
known number of additional repeats (Fig. 5i,j). As expected, the
interval-shuffling (450 ms) method added many more repeats to
each recording (four of five artificial recordings had significantly
more repeats in the surrogates than in the artificial recording; Fig.
5k). While it is possible to remove baseline variation from the
recording, this could eliminate important slow components from
the signal such as gradual membrane potential changes. Instead,
we changed the length of the longest possible contiguous segment
from 450 ms (the value close to the original value used by
Mokeichev et al., 2007) to 100 ms. This had the effect of adding
more transition segments and largely removing the “digital-like”
structure we saw with interval shuffling, while still preserving the
overall dynamics of the recorded data [Fig. 5a, interval (100 ms)].
With a maximum interval of 200 ms, six of eight recordings had
significantly fewer repeats in the surrogates than in the original

Figure 3. Spectral characteristics. a, Left, Representative spectral density of a template (t; gray) and one of its repeats (r; black). Right, Spectral density of template and randomly chosen
nonrepeat (nr; black). b, Spectral angle of template–repeat pairs is significantly lower than that of template–nonrepeat pairs (n � 8 recordings with nonzero repeats; df � 7, **p � 0.001, effect
size � 3.2; Student’s paired t test). c, Power in specific frequency bands of repeats and nonrepeats. Repeats had significantly higher power in the low-frequency range (3– 6 Hz) but not in theta or
gamma bands (n � 8 recordings with nonzero repeats; df � 7, *p � 0.022, effect size � 0.57, p � 0.09 (n.s.), effect size � 0.36 for theta, effect size � 0.10 for gamma; Student’s paired t test).
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data, which is similar to the results using a maximum interval of
100 ms. We therefore concluded that the 100 ms interval shuf-
fling parameter is robust. We were unable to test maximum in-
tervals �100 ms because such short intervals led to significant
decreases in the number of usable subsegments for restitching. In
the interval-shuffling algorithm, recording segments that do not
cross the one-third and two-thirds voltage levels over the dura-
tion of the maximum length parameter (100 ms) are discarded
and not used for restitching, as was done in a previous study
(Mokeichev et al., 2007). For example, changing the parameter to
50 ms leads to the discarding of the majority (�60%) of the
recording.

Correlating repeated patterns with spiking activity
We next examined whether repeats were related to the spiking
output of the cell. This could indicate that the repeats are an
important feature of activity propagation in the network. No
overt relationship between the number of spikes and the number
of repeats in a recording was observed (Pearson’s r � 0.08; p �

0.84, n � 9, df � 8); but a temporal relationship within record-
ings could still exist. We analyzed the relationship between repeat
occurrence in the recording and the spiking activity of the cell and
found them to be correlated. The “repeat rate” was defined as the
rate at which repeats occur in the recording regardless of their
parent template. This rate was compared with the spike rate of the
cell, revealing a high level of correlation (median, 0.60; range,
�0.16 to 0.63; Fig. 6a,b). When spikes were shuffled over the
entire recording, this correlation disappeared (median, 0.06;
range, �0.33 to 0.10; n � 5 recordings with number of spikes �0
and number of repeats �0). Treating repeats as a rate is useful for
direct comparison to the spike rate but could be misleading due
to the occurrence of overlapping repeats (Fig. 6a) from different
templates, which typically signify that the repeated activity lasts
longer than 900 ms. To control for this, we looked for spikes
occurring during any repeat. If we restricted the search to non-
overlapping time windows, we would exclude these longer re-
peats, and, as a result, we may not accurately identify which spikes
occur during repeats. Instead, we classify each time point in the

Figure 4. Precision in high frequencies of template–repeat pairs. a, Sample template (red)–repeat (blue) pairs from a recording (top) filtered �100 Hz to reveal slow fluctuations (middle) and
�100 Hz to reveal fluctuations on the 10 ms timescale and lower (bottom). In this example, the template–repeat pairs are correlated as follows: unfiltered membrane potential, r � 0.82;
membrane potential filtered at �100 Hz, r � 0.82; membrane potential filtered at �100 Hz, r � 0.15. b, Inset showing the template (red) and repeat (blue) for the unfiltered trace (top), low
frequencies (middle), and high frequencies (bottom). Repeat correlation is preserved at high frequencies. c, Low-frequency (top row) and high-frequency (10 ms timescale, bottom row) correlations
are higher for template–repeat pairs than for randomly chosen template–nonrepeat pairs. Left column shows comparison of average r values per recording [n � 8 recordings with nonzero repeats,
df � 8, *p � 0.01, effect size � 5.4 (top), 0.33 (bottom); Wilcoxon signed-rank test]; right column shows aggregated r values for all repeats [n � 10,083 repeats, df � 10,083; #p � 0.001; effect
size � 2.01 (top), 0.15 (bottom); Mann–Whitney U test]. Box plots show median and first/third quartiles. Whiskers show the data range.
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Figure 5. Statistical significance of repeated activity. a, Samples (900 ms duration) of original recordings and their surrogates. Two sample recordings (recording 1, top; recording 5, bottom) are
shown thay have different membrane potential distributions to show that the three surrogate data types can mimic the membrane voltage distribution of the original recordings. b, Membrane
voltage (Vm) distributions of sample recordings (recording 1, top; recording 5, bottom). The distribution for interval-shuffled recordings is identical to that of original recordings and is not shown.
c, Spectral density plots of the surrogates. Spectral density of original recording is superimposed on all plots (gray). d, Ratio of the number of repeats found in the surrogate recordings to those found
in original recordings (n � 10 surrogates of each type for each of 8 recordings with nonzero repeats). The surrogate recordings used are “model” (blue), “phase shuffled” (green), and “interval
shuffled (100 ms)” (black). Recording 6 is omitted because it had no repeats. Dashed line indicates a ratio of 1 (number of real repeats � number of surrogate repeats). A ratio of �1 indicates more
repeats found in real recordings than in their surrogates; df � 9, effect size (left to right) � 6770, 123, 1410, 317, 20, 317, 6.3, 3.1, 237, not applicable (N/A), 46, 194, 8.2, 8.1, 57, N/A, 13, 92, 65.3,
15.7, 58.1, N/A, 6.6, 5.6; p � 3 � 10 �5 Kruskal–Wallis test; *p � 0.05/3, Wilcoxon signed-rank test (with Bonferroni correction to account for three statistical tests per cell). Effect size is N/A for
models that produced 0 repeats. e, Ratio for interval-shuffled (450 ms) surrogates. df � 9; effect size (left to right) � 6.02, 6.52, 3.83, 11.8, 4.52, 3.76, 4.24, 3.96; (Figure legend continues.)
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recording as “part of a repeat” or “not part of a repeat,” so that
every spike is then either part of a repeat or not. This removes
issues with artificially high correlation rate due to overlapping
repeats while ensuring that all spikes are taken into consideration.
Indeed, a large fraction of spikes (median, 82%; range, 68 –96%)
occurred during at least one repeat (Fig. 6c).

The correlation between repeats and spiking could ostensibly
be trivially explained by limitations of the repeat-finding algo-
rithm—that is, if the algorithm was inherently predisposed to

detecting spike-containing repeats, even if they were not truly
highly correlated to the template. Namely, the repeat-finding al-
gorithm could be preferentially detecting one or more of the
following: (1) artifacts associated with spike extraction; (2) depolar-
izing events; and (3) high-variability events that produce spikes but
are not necessarily highly correlated. Neither of these explanations
account for the relationship we observe. To address the first limi-
tation, we ensured that spikes are extracted completely from the
recording before running the repeat-finding algorithm, making it
unlikely that the algorithm is preferentially detecting some ste-
reotyped feature of a spike (e.g., the sharp rise at the spike onset).
This is evident from the fact that not every spike is a member of a
template–repeat pair (in total, n � 147/675 spikes are outside
repeats; 22%). To address the second limitation, we imposed a
voltage threshold on the recordings and examined the membrane
voltage segments above the threshold, thus isolating depolarizing
events. Spikes still occurred more often within repeats than out-
side of them above the voltage threshold (Fig. 6d). To address the
third limitation, we repeated the previous analysis with variance
thresholds instead of voltage thresholds (Fig. 6e). The result we
observe with the high-variability events is the same as for the
depolarizing events: spikes still occurred preferentially within re-
peats even when only including highly variable or depolarized
periods, suggesting that the relationship we observe between

4

(Figure legend continued.) *p � 0.05 Wilcoxon signed-rank test. Dashed line indicates ratio �
1. Note the broken y-axis. f, Example of “digital-like” structure being added to the recording by
the interval-shuffling (450 ms) method. Due to baseline variation in the original recording, as
the surrogate signal is built, long segments congregate around the one-third and two-thirds
voltage levels. g, Sample extracted template (red) and its repeats (blue) from recoding 1.
h, Phase-shuffled surrogate of recording 1 onto which the sample extracted template is super-
imposed. i, Superimposed recording with a known number of new repeats (number of repeats
in phase-shuffled recording, 5014; number of repeats in recording with superimposed repeats,
5104). j, Inset of recording with superimposed repeats. k, Combined results of performing
interval shuffling on phase-shuffled recordings with superimposed repeats. Dashed line indi-
cates ratio � 1 (number of real repeats � number of surrogate repeats). The interval-shuffled
(450 ms maximum duration) surrogates had threefold more repeats (median, 3.20; minimum,
1.12; maximum, 17.1; n � 5 recordings and n � 5 surrogates per recording). df � 4; effect size
(left to right) � 15.8, 5.4, 15.9, 20.2, 4.2; *p � 0.05, Wilcoxon signed-rank test. Box plots show
median and first/third quartiles. Whiskers show data range.

Figure 6. The majority of spikes occur during intracellular repeats. a, Rastergram of repeats spikes and their occurrence rates over time for recording 3 (dotted and dashed lines, respectively).
Insets highlight areas of low occurrence of spikes and repeats (1) and high occurrence (2). Arrow shows examples of overlapping repeats. b, Spike rate tends to correlate with the repeat rate, an effect
that disappears when spikes are shuffled. p � 0.0625 (n.s.), Wilcoxon signed-rank test (n � 5 recordings with the number of spikes �0 and the number of repeats �0; df � 5; effect size � 0.88).
c, Spikes occur within repeats at higher levels than expected by chance. Chance level is the fraction of each recording that is part of at least one repeat. *p � 0.0313, Wilcoxon signed-rank test (n �
5 recordings with the number of spikes�0 and the number of repeats�0; df�5, effect size�1.05). Box plots show median and first/third quartiles. Whiskers show the data range. d, Left, Sample
recording (recording 7) thresholded to isolate depolarizing events above the minimum spike threshold �10 mV (Vthresh � 10 mV). Gray, Entire recording; blue, segments of repeats above the
threshold; green, segments of nonrepeats above the threshold. Inset, Spikes (*) occurring within (blue) and outside (green) repeats. Here, four spikes occurred within thresholded repeats and one
spike occurred outside them. Right, Normalized spike rate (�1 to 1) upon application of membrane voltage thresholds. Normalized spike rate�0 indicates more spikes occurring during thresholded
repeats than during thresholded nonrepeats. Top 10%: t(4) � 3.05, p � 0.019; effect size � 1.37; Vthresh � 10 mV: t(4) � 5.36, p � 0.0029; effect size � 2.40 (one-sample Student’s t test; n �
5 recordings with the number of spikes �0 and the number of repeats �0). e, Left, Sample recording (recording 3) thresholded to isolate high-variability events above the average variance of the
repeats in the recording (“avg. var.”). The color scheme is the same as in d. Right, Normalized spike rate (�1 to 1) upon application of the top 10% and average variance thresholds (*p � 0.05).
Top 10%: t(4) � 2.34, p � 0.039; effect size � 1.05; avg. var.: t(4) � 2.20, p � 0.047; effect size � 0.98 (Student’s t test, n � 5 recordings with the number of spikes �0 and the number
of repeats �0).

1830 • J. Neurosci., February 14, 2018 • 38(7):1821–1834 Kolb, Talei Franzesi et al. • Long-Timescale CA1 Inputs in Awake Mice



spikes and repeats is not trivially explained by limitations of the
repeat-finding algorithm.

Since spikes co-occurred with repeats, and repeats were found
to have highly precise components, we asked whether spikes also
occurred with high precision. Within template–repeat pairs in
which the template contained a spike, spikes tended to occur
within repeats with a surprising degree of temporal precision.
That is, spikes in repeats tended to occur close to the position of
spikes in their templates (Fig. 7a). To quantify the temporal preci-
sion, for each template–repeat pair where the template contained a
spike we searched for a spike near each repeat, only counting each

spike and repeat once to avoid double counting due to overlap-
ping repeats (Fig. 7b). In a representative recording, we found a
peak interval between spikes in the template and repeats between
0 and 20 ms (Fig. 7c). This peak disappears if the spikes within the
recording are shuffled (Fig. 7c). In the four recordings with at
least one spike-containing template and repeat, spikes were more
likely to reoccur within 20 ms than in traces with shuffled spike
times (Fig. 7d). The shuffled spike control ensures that any exist-
ing relationship between spike timing and repeat timing is elim-
inated. While this precision in spike timing was observed, we
wondered whether it was correlated with the similarity between

Figure 7. Precision of spikes within repeats. a, Two examples (from recording 1) of spikes reoccurring with 10 ms precision (2.5 ms in top example, 0.5 ms in bottom example) within
template–repeat pairs in spike-removed membrane voltage recordings. Spike locations are marked with *. Spikes are shown in the inset. b, Method for quantifying spike temporal precision. For each
spike within a template, a 20 ms window around the spike is defined. The t0 point is the time index of the spike in the template. For every repeat with a spike, the time between t0 and the nearest
spike is recorded. Repeats containing spikes within 20 ms of t0 are marked (check mark). Those spikes are considered precise. Each spike was counted only once (i.e., a marked spike could not be
marked by another template). The fraction of spikes within 20 ms of the original is then calculated (in this diagram, 2 of 7 � 0.286). c, Representative histogram for recording 1 (blue) showing the
time between t0 and the nearest spike in templates and their repeats (combined from 625 templates and 7173 repeats) truncated to 1000 and 20 ms (inset). Note that the time bin in the main panel
(20 ms) is different from the time bin in the inset (0.5 ms). The same metric was calculated for the case when spikes were shuffled (gray line, average of 10 shuffles). d, Fraction of spikes in repeats
occurring within 20 ms of the spike in their templates for each recording (blue bars). Gray bars, Shuffled spikes. Recording 1: t(9) � 27.2, p � 5 � 10 �10, effect size � 1.79; recording 2: t(9) � 69.6,
p � 1 � 10 �13, effect size � 3.51; recording 3: t(9) � 9.79, p � 5 � 10 �6, effect size � 0.34; recording 4: t(9) � 113, p � 2 � 10 �15, effect size � 3.7 (***p � 10 �5, Student’s t test; n �
10 spike shuffles). Recordings were excluded if they had no spike-containing templates and repeats. Bar graphs show the mean 
 SD. e, Fraction of precise spikes as a function of jitter time for the
recordings analyzed in d. Data are shown as the median (black) and the extent of the first/third quartile (gray).
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the template–repeat pair. To evaluate this, we computed the min-
imum time difference between spikes in templates and repeats
and correlated that value to the template–repeat Pearson’s r
value. For the four suitable recordings (recordings 1– 4), no cor-
relation was observed (recording 1: r � �0.04, p � 0.59, n � 175;
recording 2: r � �0.076, p � 0.25, n � 235; recording 3: r �
�0.41, p � 0.3, n � 8; recording 4: r � �0.1, p � 10�4, n �
1392). In analyzing extracellular recordings, jitter analysis is often
used to probe the temporal precision of neuronal processes (Hat-
sopoulos et al., 2003; Amarasingham et al., 2012). We used it to
determine at what jitter interval spike precision was disrupted in
spike-containing template–repeat pairs. In the four analyzed re-
cordings, increased jitter time tended to reduce the fraction of
precise spikes, as expected (Fig. 7e); however, the number of
preshuffled precise spikes in recordings 1–3 was already low
(2–23 spikes), much lower than in extracellular recording studies
using this technique (Alvarado-Rojas et al., 2013; Diba et al.,
2014). Because of this, an accurate estimate of the jitter time at
which spike precision disappears could not be easily computed.
Thus, while jitter analysis corroborated the existence of spike
precision, it alone could not be used to quantify it.

Discussion
Repeated sequences of spiking activity in the hippocampus have
previously been observed on the 100 –300 ms timescale in the
form of replay during SWRs (Nádasdy et al., 1999; Louie and
Wilson, 2001; Dragoi and Tonegawa, 2011), but longer sequences
have not been studied. Prior studies that have investigated long
repeated patterns of intracellular activity were performed in vitro
or in anesthetized preparations (Ikegaya et al., 2004, 2008;
Mokeichev et al., 2007), leaving open the question of the exis-
tence and possible function of such long repeated patterns in the
awake brain. In this study, we found 900-ms-long segments of
repeated intracellular activity in CA1 neurons of awake, behaving
mice, suggesting the presence of long presynaptic repeated se-
quences of spiking activity that occur independently of network
state.

Using statistical controls, we determined that repeats occur
more often in real recordings than in stochastically generated
surrogate data. Moreover, the repeats tended to co-occur with
spikes: 82% of spikes occurred during repeats. Finally, the re-
peated subthreshold activity and the spiking activity within re-
peats reoccurred with 10 and 20 ms precision, respectively. These
results provide strong evidence that long patterns of activity are
repeated and transmitted to downstream neurons, suggesting a
longer timescale of information transmission than previously
thought.

Significance of long-timescale repeated activity
The CA1 network can operate with exquisite temporal precision,
and structured activity patterns have been observed at the 100 –
300 ms timescale, which is associated with particular network
states such as replay of sequences during SWRs (Nádasdy et al.,
1999) and theta (Dragoi and Buzsáki, 2006) and gamma oscilla-
tions (Carr et al., 2012). In this study, we present evidence of
repeated activity patterns that are both longer than previously
described in CA1 and independent of network state. Given that
potentially thousands of cells are reactivated in a particular se-
quence during memory recall (Schmidt et al., 2012), it is plausible
that the long repeated activity we observe may reflect such reac-
tivation. We note that our findings represent a lower limit on the
duration and prevalence of precisely repeated sequences of sub-
threshold activity, which might be observed if longer segments

(e.g., hours or days, instead of minutes) of intracellular dynamics
could be analyzed. Prior studies of reactivation may have been
limited by the number of recorded cells and therefore the full
duration of such repeated activity may not have been characterized.
For example, long reactivation of sequences is difficult to detect us-
ing extracellular probes if spiking is spatially sparse. New technolo-
gies that can record orders of magnitude more cells may reveal
longer timescales of reactivation from extracellular recordings.

The fact that repeats occur both within and outside of sharp-
wave ripples, which have been strongly implicated in spatial
memory, suggests that the brain has multiple mechanisms for
generating the same activity pattern multiple times. Since repeats
occur both during and outside of canonical LFP oscillations such
as theta and gamma, it would seem that their genesis is indepen-
dent of the mechanisms of network rhythmogenesis. Repeats and
sharp-wave ripple replay may carry the same type of information,
perhaps with different functions (also suggested by the fact that
during replay previous activity is compressed in time), or repeats
may carry complementary information (e.g., about the internal
state of the animal). Since the same repeats are observed in dif-
ferent network states, it is possible that the same information
might be used differently in the brain at different times (e.g., for
navigation vs memory formation vs planning), perhaps depend-
ing on the ongoing state of the network.

Evidence for long-timescale information transmission
To date, little attention has been focused on how sequences of
spiking activity are transmitted to single neurons downstream.
Sequences of activity encoding information over time could be
transmitted in multiple ways. On one extreme, a sequence of
activity could propagate from one neural population to another
in a one-to-one manner such that any single neuron receives
information only about a single moment in the sequence. At the
other extreme, postsynaptic cells could receive inputs from many
single neurons that are active throughout the sequence such that
the cell receives inputs across the entire sequence. Our discovery
of long repeated subthreshold patterns of activity that likely re-
flect repeated presynaptic inputs to the neuron being recorded
suggests single neurons receive long sequences of activity instead
of only short parts of sequences.

The observed link between repeats and spikes, and the preci-
sion of repeated subthreshold and spiking activity suggest that
this repeated activity could be important for information trans-
mission in the network. Three findings support this idea. First,
the precise reoccurrence of subthreshold patterns above chance
levels suggests that this activity is driven by repeated patterns of
spiking activity that provide inputs to the recorded cell. These
repeated presynaptic spiking patterns may not be identical but
are similar enough to produce very similar postsynaptic activity,
in conjunction with the passive biophysical properties and active
conductances of recorded neurons. High-resolution recordings
with calcium or voltage sensors from both dendrites and soma of
CA1 cells might help to dissect the roles of inputs and intrinsic
mechanisms in precisely reproducing repeated patterns of post-
synaptic activity. Repeated patterns of spiking activity in the in-
puts to CA1 neurons could arise in CA3. Spiking sequences in
CA3 pyramidal cells are thought to stem from recurrent connec-
tions between CA3 pyramidal cells (Levy, 1996; Lisman, 1999).
Alternately, these repeated patterns could arise from a combina-
tion of inputs from entorhinal cortex, CA3, and local interneu-
rons. While with our data it is not possible to establish exactly
where the repeated inputs to the CA1 neuron recorded come
from, the prevalence of repeats and their strong correlation with
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spiking would suggest that the two main inputs to CA1, CA3,
and/or entorhinal cortex play an important role. Regardless of
the exact regions involved in providing the repeated input pat-
terns, it is possible that the activity represents network attractor
states, onto which the network converges, even starting from
slightly different initial conditions. In a pathological context, it is
possible that the epileptic state shares some features with, and
may evolve from, such persistent network attractor states.

Second, spikes occur preferentially during repeats, suggesting
that repeated activity is more likely to drive neuronal output than
nonrepeating activity. This could arise because the patterns of
network activity that are more likely to drive repeats are also more
likely to drive spiking. Indeed, these repeated subthreshold pat-
terns may reflect periods of highly coordinated activity in the
inputs of a cell that are more likely to make the cell fire. For
example, large depolarizations that drive spiking in the template
are also likely to drive spiking during repeats, contingent on the
state of the neuron before the beginning of the repeat and on
variability in the ongoing synaptic inputs. It is important to note
that while most spikes occurred during repeated subthreshold
activity, not all repeats included a spike. Therefore, we cannot
conclude that repeats, at a broad level, drive spiking activity.

Third, we observed high levels of precision in both the mem-
brane potential repeats and in spike patterns. In the membrane
potential, we found that, although the majority of the correlation
between templates and repeats is created by low-frequency com-
ponents, the correlation between templates and repeats in high
frequencies (�100 Hz) is greater than would be expected by
chance, suggesting a level of precision on the 10 ms timescale. In
spike patterns, we found that templates with spikes had repeats
with spikes within 20 ms of the template spike at a rate above what
would be expected by chance. We have observed no evidence of
significant repeat or spike precision on the single-millisecond
timescale. Nevertheless, the precision we did find is consistent
with the observed spike precision reported previously (Mainen
and Sejnowski, 1995). For example, the spike jitter in CA1 pyra-
midal cells in response to EPSPs was found to be in the 10 –20 ms
range (Mainen and Sejnowski, 1995; Fricker and Miles, 2000).
Thus, the high precision of spikes in repeats provides further
support that these repeated patterns may be due to repeated
structured activity in the inputs of recorded cells.

Comparison to results from anesthetized cortex
The structure of subthreshold activity differs in important ways
between awake and anesthetized brain states, which could have
significant effects on how repeated activity is detected and inter-
preted. During anesthesia, periodic up-down states are often
observed intracellularly, which changes the structure of the re-
cording and likely influences information processing (Bermudez
Contreras et al., 2013). On the other hand, up-down states are
rare in in the hippocampus and in awake animals (with excep-
tions; Engel et al., 2016). Mokeichev et al. (2007) report slight to
significant bimodality in the membrane potential of their record-
ings, an expected effect of anesthesia, while our recordings show
no consistent bimodality. The lack of this bimodal structure to
our recordings likely contributed to �1000-fold fewer repeats
being found in our preparation. When we ran our repeat-finding
algorithm on recordings from anesthetized cortex with clear up-
down states, we found many more repeats (e.g., �25,000 for a 4
min recording), as expected. Thus, we conclude that repeats are
more likely to be found in recordings with bimodal membrane
voltage distributions. There are two other differences in our
repeat-finding approaches from Mokeichev et al. (2007) that may

also contribute to a difference in the number of detected repeats.
First, our recordings were all shorter than the recording duration
used in the study by Mokeichev et al. (2007) (10 –20 min), so we
had fewer candidate templates to use to search for repeats. Sec-
ond, there were differences in the way we searched for repeats.
Mokeichev et al. (2007) used a tiered search at two timescales,
producing a similarity score of two segments at a low resolution
[1 s, termed the low-resolution index (LRI)] and at high resolu-
tion [100 ms; termed the high-resolution index (HRI)]. Record-
ing segments passing a low-resolution threshold of correlation
coefficient r � 0.45 were considered to be repeats. We used only
one threshold set to r � 0.80, which predictably led to fewer
repeats being found in our recordings. We elected to not use the
LRI-HRI approach in our study to maintain simplicity in report-
ing results as correlation coefficients rather than abstract scores.
A more recent approach, based on detecting postsynaptic poten-
tials (Ikegaya et al., 2008) could not be used because we could not
reliably detect individual PSPs, likely due to the structure of
membrane potential fluctuations in awake animals, which re-
ceive large barrages of inputs from presynaptic neurons.

Statistical controls to establish significance
The significance of spontaneously occurring intracellular repeats
has been controversial due to the difficulty in creating proper statis-
tical methods of controlling for correlated segments that emerge
randomly. We used rigorous statistical controls (Mokeichev et al.,
2007) to establish that even though spontaneous activity in the
awake brain is thought to be highly desynchronized, there are still
cells with precisely repeated subthreshold patterns over long
timescales in hippocampal CA1. The three surrogate generation
strategies shown in that study represented a significant advance
in analyzing repeated intracellular activity; however, we found
that they needed two modifications to make them suitable for
analyzing recordings from awake, behaving animals. First, we
replaced the Poisson simulation from the study by Mokeichev et
al. (2007), which produced surrogate data that were not similar to
our recordings, with a stochastic synaptic input model (Paninski
et al., 2012), which better reproduced membrane dynamics of
awake recordings such as unimodality, frequent, nonseparable
synaptic inputs, and baseline variation. Second, for interval shuf-
fling, we decreased the duration of the longest possible contigu-
ous segment from 450 to 100 ms. This decreased the effect of
baseline variation on the interval-shuffling procedure. The 450
ms threshold was appropriate for breaking up and rearranging
bimodal membrane potential traces like up and down states in
anesthetized preparations but insufficiently shuffled our awake
recordings, as described in the “Establishing significance of
repeated patterns using statistical controls” section. While surro-
gate generation strategies cannot definitively prove the nonsto-
chastic emergence of repeats, they are a reliable starting point for
these analyses. Beyond these statistical controls, we also estab-
lished the significance of these repeated patterns by characteriz-
ing their precision and relationship to spike output.

In summary, we find unexpectedly long repeated subthresh-
old patterns of activity in CA1 of awake, behaving mice, which
occur independently of network state and are strongly correlated
with spiking output. These results suggest that long sequences of
activity are transmitted to single postsynaptic neurons. These
findings help constrain possible models of information encoding
and transmission in the awake brain.
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lective suppression of hippocampal ripples impairs spatial memory. Nat
Neurosci 12:1222–1223. CrossRef Medline

Haider B, Duque A, Hasenstaub AR, McCormick DA (2006) Neocortical
network activity in vivo is generated through a dynamic balance of exci-
tation and inhibition. J Neurosci 26:4535– 4545. CrossRef Medline

Harvey CD, Collman F, Dombeck DA, Tank DW (2009) Intracellular dy-
namics of hippocampal place cells during virtual navigation. Nature 461:
941–946. CrossRef Medline

Harvey CD, Coen P, Tank DW (2012) Choice-specific sequences in parietal
cortex during a virtual-navigation decision task. Nature 484:62–68. CrossRef
Medline

Hatsopoulos N, Geman S, Amarasingham A, Bienenstock E (2003) At what
time scale does the nervous system operate? Neurocomputing 52:25–29.

Ikegaya Y, Aaron G, Cossart R, Aronov D, Lampl I, Ferster D, Yuste R (2004)
Synfire chains and cortical songs: temporal modules of cortical activity.
Science 304:559 –564. CrossRef Medline

Ikegaya Y, Matsumoto W, Chiou HY, Yuste R, Aaron G (2008) Statistical
significance of precisely repeated intracellular synaptic patterns. PLoS
One 3:e3983. CrossRef Medline

Jadhav SP, Kemere C, German PW, Frank LM (2012) Awake hippocampal

sharp-wave ripples support spatial memory. Science 336:1454 –1458.
CrossRef Medline

Kodandaramaiah SB, Franzesi GT, Chow BY, Boyden ES, Forest CR (2012)
Automated whole-cell patch-clamp electrophysiology of neurons in vivo.
Nat Methods 9:585–587. CrossRef Medline

Levy WB (1996) A sequence predicting CA3 is a flexible associator that
learns and uses context to solve hippocampal-like tasks. Hippocampus
6:579 –590. CrossRef Medline

Li CY, Poo MM, Dan Y (2009) Burst spiking of a single cortical neuron
modifies global brain state. Science 324:643– 646. CrossRef Medline

Lisman JE (1999) Relating hippocampal circuitry to function: recall of
memory sequences by reciprocal dentate–CA3 interactions. Neuron 22:
233–242. CrossRef Medline

Louie K, Wilson MA (2001) Temporally structured replay of awake hip-
pocampal ensemble activity during rapid eye movement sleep. Neuron
29:145–156. CrossRef Medline

Luczak A, Maclean JN (2012) Default activity patterns at the neocortical
microcircuit level. Front Integr Neurosci 6:30. CrossRef Medline
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