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SUMMARY 

 

Whole-cell patch clamp electrophysiology of neurons in vivo enables the recording of 

electrical events in cells with great precision, and supports a wide diversity of 

morphological and molecular analysis experiments important for the understanding of 

single-cell and network functions in the intact brain.  However, high levels of skill are 

required in order to perform in vivo patching, and the process is time-consuming and 

painstaking.  Robotic systems for in vivo patching would not only empower a great 

number of neuroscientists to perform such experiments, but would also open up 

fundamentally new kinds of experiments enabled by the resultant high throughput and 

scalability. We discovered that in vivo blind whole cell patch clamp electrophysiology 

could be implemented as a straightforward algorithm and developed an automated robotic 

system that was capable of performing this algorithm. We validated the performance of 

the robot in both the cortex and hippocampus of anesthetized mice. The robot achieves 

yields, cell recording qualities, and operational speeds that are comparable to, or exceed, 

those of experienced human investigators.  Building upon this framework, we developed 

a multichannel version of “autopatcher” robot capable establishing whole cell patch 

clamp recordings from pairs and triplets of neurons in the cortex simultaneously. These 

algorithms can be generalized to control arbitrarily large number of electrodes and the 

high yield, throughput and automation of complex set of tasks results in a practical 

solution for conducting patch clamp recordings in potentially dozens of interconnected 

neurons in vivo. 
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CHAPTER 1 

INTRODUCTION 

 

 

The vertebrate brain is a complex organ consisting of billions of neurons1, each of 

which is interconnected with thousands of other neurons through synapses2. Each neuron 

receives information via synaptic transmission, computes an electrical signal within it, 

and transmits information to downstream neurons. They express different sets of genes3, 

have myriad morphologies, and undergo intrinsic molecular changes in different ways 

during cognitive tasks such as learning. One of the fundamental challenges for 

neuroscientists has been the inability to link the knowledge we have on cellular level 

phenomena, such as synaptic transmission, often gained by in vitro experimental 

preparations; to characterizations of the higher order system properties like learning and 

memory. To gain a mechanistic understanding of how cellular level activities of neuronal 

networks give rise to these higher level cognitive abilities, and how they go awry in brain 

disorders, one would have to observe networks of neurons processing electrical signals in 

the living mammalian brain, while at the same time extract their genetic and 

morphological information of each individual neuron.  

 

1.1 Patch Clamping 
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One technique that is uniquely able to do this is the whole cell patch clamping 

technique. First developed by Erwin Neher and Bert Sakmann’s groups in the early 

1980’s4, patch clamping involves the use of a glass pipette with a tip size comparable to 

the size of the recorded neuron (~1 µm), filled with a conduction saline solution. The 

pipette is carefully manipulated until it makes physical contact with the cell being 

targeted, at which point application of a slight suction pulls in ‘patch’ of the membrane 

into the tip of the glass electrode, resulting in the formation of a high resistance seal 

between the glass tip and the cell membrane. This high resistance seal also called a 

‘gigaseal’ or ‘gigaohm seal’ because the resistance of the seal is greater than a gigaohm, 

enables the electrical isolation of the patch of the membrane. All current measured by the 

pipette pass through the ‘patched’ membrane with very little external noise being picked 

up as a result of the high resistance. In this seminal work, Hamill et al demonstrated 

several versions of this technique such as the outside out patch, the inside out patch, cell 

attached patch and whole cell patch recording techniques, each of which are uniquely 

suited for a number of single cell, and single ion channel experiments. In the whole cell 

patch clamp version of this technique, which will be the primary focus of this thesis, the 

patch of membrane trapped in the tip is ruptured either by application of a brief pulses of 

suction, or by application of a voltage pulse and this allows access to the intracellular 

space of the cell. In this case, the current measured by the pipette is the net summation of 

the all the currents flowing through the various ion channels of the particular cell.  

While initially developed to study the electrophysiology of cultured cells in vitro, 

the whole cell patch clamp technique was further adapted for intracellular recording of 

single neurons in brain slice preparations5.  This extension enabled studies of single brain 
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cells in quasi-intact brain circuits has led to several key insights into the synaptic 

organization of the brain6-11. Further, access to the intracellular space of the recorded 

neuron offers additional capabilities that are not possible with other extracellular and 

intracellular recording strategies (such as sharp electrodes). The intracellular pipette 

solution in the pipette can contain neurobiotin or biocytin to stain the cell via diffusion 

during whole cell patching and this can be used to determine the morphology of the 

neuron after the whole cell recording12, 13. Furthermore, by accessing the intracellular 

cystosol and harvesting it, it is possible to characterize the single cell gene expression 

profile of the recorded cell3, 14-18 allowing a comprehensive characterization of the cell 

being recorded from.  

 

1.2 Patch clamping of single neurons in vivo 

 

More recently, Margrie et al demonstrated the ability to conduct whole cell patch 

clamping recordings of neurons in the intact rodent brain19. A key change in the existing 

patch clamp protocols in slices was the introduction of the patch pipette into the brain at a 

high positive pressure, so as to prevent the tip from fouling. This work demonstrated that 

it was possible to obtain high quality whole cell recordings from single cells that were 

remarkably stable despite the movement of brain tissue due to heartbeat and breathing 

perturbations. Whole cell recordings obtained under anesthesia, remained viable, even 

after the animal was removed from the effect of the anesthetic. Further, the low series 

resistance of whole cell recordings allowed voltage clamp recordings20-22, unlike the 
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traditional in vivo intracellular recordings done using sharp microelectrodes23. The same 

group later on demonstrated that it was possible combine this technique with a two 

photon imaging system, to obtained recordings from specific cell types that was 

genetically tagged with a flourescent molecule such as GFP24. As an alternate version of 

this technique, Kitamura et al25, developed the in vivo shadow patching technique, 

wherein the patch electrode was used to perfuse the extracellular space surrounding the 

neuron of interest with a fluorescent dye, thus enabling the neuron to be visualized as a 

negative image ('shadow') and identified on the basis of its somatodendritic structure. The 

same electrode was then placed on the neuron under visual control using a two-photon 

microscope to allow formation of a gigaseal. Several groups have since used such 

optically targeted patch clamp recordings to study the characteristics identified cell types 

and the causal role played by them in cortical signal processing26-32. It must however be 

noted that due to the limitations of the two photon optics, such targeted methods can be 

employed only to record from optically accessible layers of the brain (300-400 µm); 

targeting deeper structure would require more invasive techniques such as careful 

aspiration of the cortex to image for example the hippocampus33.  

The increased stability of whole cell recordings as compared sharp microelectrode 

recording enables the recordings of neurons in awake head fixed mice. Albert Lee et al 

demonstrated a head borne version of the in vivo patch clamping system, wherein, whole 

cell recordings were obtained when the animal was under anesthesia, and subsequently 

anchored to the skull prior to administration of an anesthetic antidote34-37. The recordings 

remained stable even after the animal was woken up and moved freely in a behavior 

arena.  
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1.3 Electrophysiology of neuronal ensembles the intact brain  

 

Traditionally, extracellular recording techniques have been used for probing of 

how neurons work together within and between brain regions to generate neural 

synchrony, population codes, and other manifestations of how neural networks operate by 

coordination of their circuit elements (e.g., 38-45). Critical insight has been gained even in 

the absence of the ability to resolve the sub-threshold synaptic and intrinsic conductances 

within neurons. In contrast, simultaneous patch clamping among sets of neurons in vivo 

can not only resolve supra-threshold spiking activity, but also enables assessment of 

additional core measures of neural dynamics, including patterns of intrinsic channel 

conductance dynamics, and gap junction-mediated neural network activity. Further, the 

ability to isolate mRNA from individual cells for molecular analysis, the ability to fill 

cells with dyes for assessment of morphology and connectivity, and the ability to dialyze 

in pharmacological agents, also enable relatively comprehensive characterization of each 

neuron within a network. Although microcircuit connectivity has been probed in slices 

using parallel patch clamp with 2-12 electrodes (e.g., 6, 46-48), this strategy has been 

impractical to conduct in the intact brain, given the difficulties of patch clamping. The 

existing literature on simultaneous whole cell patch clamping in vivo in two neurons, give 

us important insights into how sub threshold membrane potential dynamics manifest 

across neuronal networks in different brain states27, 29, 31. By combining the capabilities of 

measuring cell connectivity, as well as gene expression patterns to large numbers of cells 



 6 

in vivo, it will be possible to link cellular phenomena such as synaptic plasticity to 

systems properties such as learning and memory.  

 

1.4 Limitations and Challenges of in vivo patch clamping 

 

Despite being the gold standard of electrophysiology, patch clamping in vivo as a 

reproducible technique for large-scale studies, both at the single cell level, as well as 

being utilized for studying ensembles of neurons has not progressed very much over the 

last 10 years. One of the fundamental challenges has been that in vivo patch clamping has 

is something of an artform to perform requiring a considerable degree of skill and 

mastery. The success rates of in vivo patch clamping experiments as reported in existing 

literature are low (~20%). The complexity of the tasks involved has precluded studies 

requiring the simultaneous recordings of multiple neurons.  

 

One strategy that can be employed to overcome the low throughput and difficulty 

of the process, and enable scalability is to automate the process of in vivo patch clamping. 

Many pioneering technologies have been proposed that automate the patching of cultured 

cells in vitro49, often by sucking a freely floating cell down onto a microscale pore, or by 

otherwise bringing a planar substrate into contact with a cultured cell.  These 

technologies, however, are not usable in intact tissues such as in the living brain.  Other 

technologies proposed for intracellular recording (e.g., static arrays of microfabricated 

nanowire or other nanoscale probe50) have similarly been utilized on cultured cells, but 
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are currently difficult to make and utilize, have significantly lower signal quality than that 

yielded by patch clamping, have not been successfully deployed in vivo, and are not 

capable of transcriptomic harvesting, dye filling, and other tasks critical for linking 

electrophysiological phenotype with other cell phenotypes.  In contrast, the intrinsically 

fluidic aspect of patch clamping supports, in the intact brain, the tip cleanliness required 

for good intracellular recordings; additionally, the ability to move the patch pipette 

enables higher yields of cells than obtainable with static probes, as well as the ability to 

target neurons visualized in two-photon microscopy.  

 

Once the in vivo patch clamping process has been automated, robotic systems can 

be developed that employ these automation algorithms to control multiple devices at the 

same time, enabling a degree or have multiple electrodes in a single device targeting 

many cells simultaneously at the same time. Furthermore, these robotic systems will have 

be designed from the ground up, with the specific function of patch clamping in vivo, as 

traditional planar microelectrode array devices51, 52 used for in vitro patch clamping 

applications cannot be used in the complex three dimensional structure of the brain.   

 

1.5 Thesis Outline 

 In chapter 2 of this thesis, we describe in detail how we discovered an algorithm 

for automating whole cell patch clamping. We report on the development of an 

automated robotic system that was capable of performing this algorithm. We validated 

the performance of the robot in both the cortex and hippocampus of anesthetized mice. 

The robot achieves yields, cell recording qualities, and operational speeds that are 
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comparable to, or exceed, those of experienced human investigators.  In Chapter 3 we 

demonstrate how such an autopatching robot can be combined with optogenetic 

stimulation hardware, to optically perturb recorded neurons, to identify specific cell types 

in the brain. Building upon this framework, we developed a multichannel version of 

“autopatcher” robot capable establishing whole cell patch clamp recordings from pairs 

and triplets of neurons in the cortex simultaneously. These algorithms can be generalized 

to control arbitrarily large number of electrodes and the high yield, throughput and 

automation of complex set of tasks results in a practical solution for conducting patch 

clamp recordings in potentially dozens of interconnected neurons in vivo. We report on 

these finding in Chapter 4 of this thesis.  
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CHAPTER 2 

AUTOMATED WHOLE CELL PATCH CLAMPING OF NEURONS 

IN VIVO 

 

2.1. Introduction 

 

Whole-cell patch clamp electrophysiology, in which a glass pipette electrode is 

used to gain electrical and molecular access to the inside of a cell4, is a gold standard 

technique for the high-fidelity recording of electrical activity in neurons embedded within 

intact tissue, such as in brain slices53-57, or in vivo20, 26, 31, 36, 58-62.  In vivo patching of cells 

in intact brain presents several capabilities that make it of great use: the recordings 

present extremely high signal-to-noise ratios and thus can be used to reveal subthreshold 

responses such as synaptic or ion channel events.  Current can be delivered into a pipette 

to drive or silence the cell being recorded, or to support the characterization of specific 

receptors or channels in the cell.  This technique also allows for infusion of chemicals 

such as cell-filling dyes that enable anatomical visualization, as well as the extraction of 

cell contents for transcriptomic analysis14, 16, 63.  However, whole-cell patch clamping of 

cells in intact tissue is laborious, being something of an art to perform, especially in vivo.  

Although protocols exist for performing whole-cell patch clamp recording in such 

conditions20, 21, 24, 60, 64-68, much practice is required by individual investigators to master 

the technique, since each step in the process of looking for a neuron and establishing the 
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recording requires intuition as well as fast judgment and action.  This has limited 

adoption to a small number of labs, and also prevents systematic or scalable in vivo patch 

clamping experiments from being possible. 

 

Ideally, an algorithm could be developed which could be executed by a robotic 

system in order to enable automated whole-cell patch clamp neural recording in vivo.  

Such an “autopatching” robot would greatly increase throughput, opening up this 

technology to a greater user base within neuroscience.  Additionally, the scalability and 

parallelizability enabled by an automated in vivo patching system would support novel 

kinds of experiment – such as the use of such an autopatcher to systematically profile 

many individual cells for electrophysiological and molecular characterization in a brain 

disorder model, or the ability to perform novel kinds of pharmaceutical assessments that 

examine the impact of drugs on many individual cells in the context of the intact brain.  It 

would also open up the ability to perform systematic single-cell analyses in intact tissue 

in other areas of bioengineering, biotechnology, and medicine, where the low throughput 

of, and high skill required for, patch clamping cells within intact tissues have remained 

barriers to adoption. 

 

In order to derive an algorithm for automatic patch clamping, we assessed each of 

the actions and decisions that humans perform during the process of patch clamping cells 

in intact tissue.  We focused on blind whole-cell patch clamp recording in vivo, because 

of its relative inexpensiveness, its usefulness in a diversity of brain regions (and not just 

in surface structures visualizable by optical microscopy), and its widespread utility in 
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performing unbiased neural recordings in a diversity of species.  We discovered that a 

simple robot comprising a programmable linear motor, and a bank of pneumatic valves, 

was capable of identifying candidate cells to record from, and establishing quality 

recordings of neurons in vivo, when programmed to monitor the pipette for precise 

sequences of changes in electrical resistance, and to actuate the motors and valves rapidly 

upon recognition of these changes.  The precision measurement and actuation of this 

autopatching robot is essential for performance of the algorithm described here, as it 

requires quantitative measurement and analysis, as well as fast reaction times.   

 

We demonstrate the utility of the autopatcher in obtaining recordings in both the 

cortex and hippocampus of the anesthetized mouse brain.  The autopatcher was capable 

of achieving high yields of both whole-cell patch and gigaseal cell-attached patch 

recordings (~30% of overall attempts, even in deep tissue, resulted in successful 

recordings), exceeding yields of many trained human investigators.  Acquisition of high-

quality recordings proceeded rapidly (taking just 3-7 minutes each), neuron recordings 

could be held for an hour or longer, and recording qualities were comparable to those of 

trained humans (e.g., access resistances in the tens of MΩ).  Being a robot, its 

performance did not decrease over time due to declines in attention or energy.  Because 

the robot is automated, an individual can monitor multiple rigs at once, making the 

number of cells recordable by a single unskilled human investigator perhaps 100 per day 

or greater, and thus opening up the possibility of systematic electrical and molecular 

analyses of single cells in intact tissue.  The autopatcher is easy to implement on existing 

patch clamp rigs, requiring just one inexpensive motor and a signal acquisition board, as 
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well as a few pneumatic control valves, making it a practical solution for labs interested 

in automating their existing rigs, or in newly adopting the use of patch clamp technology 

for intact tissue analysis at the single cell level. 

 

2.2 An autopatching robot: components, overview of algorithm, and success rate 

 

 

Figure 2.2.1: The autopatcher: a digitally controlled in vivo patch clamp setup: 
Schematic of the robotic system we implemented both to explore the parameterization of 
the in vivo patch process, and to perform the autopatching algorithm (Fig. 2.3.1).  In 
essence, the system consists of a conventional in vivo patch setup (i.e., pipette, headstage, 
3 axis linear actuator, patch amplifier plus computer interface board, and computer), 
equipped with three additional simple modules: a programmable linear motor (to move 
the pipette up and down in a temporally precise fashion), a controllable bank of 
pneumatic valves for pressure control, and a secondary computer interface board to 
enable closed-loop control of the motor based upon sequences of pipette resistance 
measurements. 
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Our robot shares many core components with those of conventional in vivo patch 

clamp systems as shown schematically in Fig 2.2.1. The recording probe is a glass 

micropipette pulled to a fine tip, and filled with conductive saline solution, into which a 

silver chloride wire is inserted that electrically connects the conductive solution to an 

amplifying headstage.  This headstage is held in place and moved by a three axis linear 

actuator; the headstage communicates electrically with an amplifier and computer 

interface board that both records the neural signals and delivers neural control signals to 

the headstage.  In addition to these conventional components, our robot also contains an 

additional linear motor for precision advancement and retraction of pipettes, as well as 

additional computer interface boards for monitoring the pipette electrical signals and for 

controlling the linear motor, and a bank of valves to control the pressure applied to the 

inside of the pipette. A photograph of the linear actuators, and the programmable linear 

motors used for pipette actuation is shown below in Fig. 2.2.2.  

 

The process of the robot performing whole-cell patch clamp neural recording in 

vivo is outlined in Fig. 2.2.2.  First, high pressure is applied to the pipette to prevent 

pipette blockage as it enters the brain, and the pipette electrical resistance is evaluated 

(e.g., between 3-9 MΩ is typical).  If the pipette is of acceptable resistance, it is 

automatically lowered to a pre-specified target region within the brain (the stage here 

labeled “regional pipette localization”), followed by a second critical examination of the 

pipette resistance for quality control.  This check is followed by an iterative process of 

lowering the pipette by small increments, while looking for a pipette resistance change 

indicative of proximity to a neuron suitable for recording (the “neuron hunting” stage). 
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Figure 2.2.2: Photograph of automated patch clamping system, focusing on the linear 
motor attached to the 3 axis linear actuator, and also showing the low-profile holder for 
head-fixing the mouse.   

 

During this phase, the robot looks for a specific sequence of resistance changes 

that indicates that a neuron is proximal, attempting to avoid false positives that would 

waste time and decrease cell yield.  After detecting this signature, the robot halts 

movement, and begins to actuate suction and pipette voltage changes so as to form a 

high-quality seal connecting the pipette electrically to the outside of the cell membrane 

(the “gigaseal formation” stage), thus resulting in a gigaseal cell-attached recording. 

If whole-cell access is additionally desired, the robot then performs controlled application 

of suction as well as brief electrical pulses to break into the cell (the “break-in” stage).  

Throughout the process, the robot applies a voltage square wave to the pipette (10 Hz, 10 
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mV alternating with 0 mV relative to pipette holding voltage), and the current is 

measured, in order to calculate the resistance of the pipette at a given depth or stage of 

the process.  Throughout the entire process of robot operation, this pipette resistance is 

the chief indicator of pipette quality, cell presence, seal quality, and recording quality, 

and the algorithm attempts to make decisions – such as whether to advance to the next 

stage, or to restart a stage, or to halt the process – entirely on the temporal trajectory 

taken by the pipette resistance during the experiment.  The performance of the robot is 

enabled by two critical abilities of the robot: its ability to monitor the pipette resistance 

quantitatively over time, and its ability to execute actions in a temporally precise fashion 

upon the measured pipette resistance reaching quantitative milestones.  

 

 

Figure 2.2.3: Algorithmic breakdown of the in vivo patch clamping process: The four 
stages of the in vivo patch process which we iteratively optimized: “regional pipette 
localization,” in which the pipette is lowered to a target zone in the brain; “neuron 
hunting,” in which the pipette is advanced until a neuron is detected via a change in 
pipette resistance; “gigaseal formation,” in which a gigaseal cell-attached patch state is 
achieved; “break-in,” in which the whole cell configuration is achieved.  For each stage, 
we systematically explored the parameters governing success of the stage, as well as the 
success of the overall procedure, discovering a number of stereotyped strategies 
appropriate for robotic execution, as well as precise numerical milestones governing 
within-stage and between-stage decisions (including quantitative measures of pipette 
quality, cell presence, and seal quality derived from the pipette resistance).   
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In the next section, we describe the algorithm performed by the robot (Fig. 2.3.1 

and 2.3.2) in detail, as well as how we discovered, implemented, and tested this 

algorithm.  But first, we summarize the performance of the robot (Table 2.2.1). When 

validated on a final robot validation test set of neural targets within the cortex and 

hippocampus of anesthetized mice, the robot (Fig. 2.2.1), running the algorithm (Fig. 

2.3.1), obtained successful whole-cell patch clamp recordings 29.1% of the time (defined 

as the holding of a cell with under 500 pA of holding current for at least 5 minutes; n = 

23 out of 79 attempts starting with pipette loading into the pipette holder), and successful 

gigaseal cell-attached patch clamp recording 30.8% of the time (defined as obtaining of a 

stable seal higher than 1 GΩ in resistance; n = 24 out of 78 attempts).  These success 

rates are similar to, or exceed, those reported by trained investigators for blind whole-cell 

patch clamping in vivo25, 37, 60.   

 
Table 2.2.1: Yields and durations of each of the four stages, when executed by the robot 
of Fig. 2.2.1 and 2.2.2, running the autopatching algorithm in the living mouse brain, 
aiming for targets in cortex and hippocampus (fully automated successful attempts 
defined as < 500 pA of current when held at –65 mV, for at least 5 minutes; n = 24 out of 
73 attempts, successful gigaseal cell-attached patch clamp recording defined as a stable 
seal of > 1 GΩ resistance; n = 27 out of 75 attempts). 
 
 Regional Pipette 

Localization 
Neuron Hunting Gigaseal 

Formation 
Break-In 

%age yield, whole 
cell patch  

81% 93% 51% 82% 

%age yield, 
gigaseal cell-
attached 

80% 93% 41% N.A 

Duration of stage 
(mean + s.d.) 

10 s 2.2 ± 1.7 min 2.6 ± 1.0 min 1-10 s 
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Focusing on the robot’s performance after the “regional pipette localization” stage 

(i.e., leaving out losses due to pipette blockage during the descent to depth), the 

autopatcher was successful at whole-cell patch clamping 41.8% of the time (n = 23 out of 

55 attempts starting with the “neuron hunting” stage), and at gigaseal cell-attached patch 

clamping 40.7% of the time (n = 24 out of 59 attempts).  From the beginning of the 

neuron-hunting phase, to acquisition of successful whole-cell or gigaseal cell-attached 

recordings, took 5 + 2 minutes for the robot to perform (n = 47 successful recordings; 

discussed in detail in Fig. 2.4.2 and accompanying text), similar to, or better than, the rate 

reported by trained investigators.  The quality of the neural recordings was high, with 

pipette access resistances and cell leaks comparable to those of past work performed by 

skilled humans (discussed in detail in Fig. 5 and accompanying text).  Thus, the 

autopatcher was capable of high yields, comparable to those achieved by trained human 

in vivo patch clamp electrophysiologists, with speeds that can support experimental yields 

of many dozens of cells per day, in an automated, scalable, and parallelizable fashion. 

 

2.3. Derivation of the autopatcher algorithm: principles of whole cell patch clamp in 

vivo 

We derived the autopatcher algorithm (Fig. 2.3.1) by analyzing and optimizing 

successively each of the four stages of robot operation (Fig. 2.2.2).  Importantly, the 

algorithm derivation described below was performed completely in the cortex, but the 

testing of the algorithm was performed on both cortical neurons as well as hippocampal 

neurons.  This generalization of the algorithm from cortex to hippocampus implies that 

the algorithm possesses a certain degree of generalization power, i.e., we did not 



 18 

unconsciously optimize the algorithm just for one brain region. Nevertheless, it is likely 

that very specialized neurons in novel brain regions may require tuning of select 

algorithm parameters, and the ability to perform this optimization using the robot would 

accelerate this process of customization, allowing for rapid iteration beginning from the 

parameters derived here.  We also tested the autopatcher on brain slices, where it was 

capable of obtaining good recordings (data not shown). 

  

At the beginning of the algorithm (gray flowchart shapes in the “setup” stage at 

top of Fig. 2.3.1), a pipette is placed in the holder and provided strong positive pressure, 

and the robot then (stage 1, “regional pipette localization”) lowers the pipette at a speed 

of 200 µm/s24, 36, 60, 61, 66 to the appropriate depth for neuron hunting.  We found that using 

a high positive pressure (800-1000 mBar), greater than done in the past9, 11, 15, 16, 25, 

greatly improved the yield of subsequent stages.  Another key finding was that after this 

first localization stage was complete, many pipettes had slightly increased their 

resistances over their original values.  Pipettes that acquired greater increases in 

resistance in this first stage had, in later stages of robot operation, more variability in 

their pipette resistance measurements than pipettes with smaller increases.  For example, 

the variance between successive measurements of pipette resistance across multiple steps 

taken during the “neuron hunting” stage was 87 + 60 kΩ for pipettes that experienced 

zero increase in resistance acquired during the first localization stage, but was 218 + 137 

kΩ  for pipettes that experienced 500 kΩ increases, significantly more variability (mean + 

std. dev; p < 0.05, t-test, n = 7 trials each).   
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Figure 2.3.1: Detailed flowchart, showing all steps for the automated in vivo patch 
process, including stereotyped strategies for stage execution, and quantitative 
milestones governing process flow and decision making.  Dotted lines frame each of 
the stages of the algorithm; within the dotted line frames, symbols representing tasks, 
measurements, and choice points are indicated, along with text explicating the individual 
steps and consequences of decisions (see “KEY” for definition of symbols).  
Abbreviations: ACSF, artificial cerebrospinal fluid; R(Z), pipette resistance at depth Z in 
the brain, in microns (with the z-axis pointing downward, e.g. larger values of Z indicate 
deeper targets); Zu, upper depth limit of the region targeted by the regional pipette 
localization stage; Zl, lower depth limit of the region targeted by the regional pipette 
localization stage; R(ZNeuron), pipette resistance at the depth at which the neuron is 
being recorded (which will vary over time, as the later stages of the process, gigasealing 
and breaking-in, occur); Rt, pipette resistance threshold for neuron detection. 
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By screening out pipettes that underwent large increases in pipette resistance 

during the first localization stage, the variability of pipette resistance measures in 

successive stages of robot operation can be reduced, improving the accuracy of the 

subsequent stages.  We found that by excluding pipettes that increased resistance by more 

than 300 kΩ in the first localization stage (which would result in a 136 + 83 kΩ 

measurement-to-measurement variance in the neuron hunting stage; n = 123), ~15% of 

the pipettes would be discarded (24 out of 147 total attempts in the final robot validation 

test set; Fig. 1Aii), but because of the low variability of later pipette resistance 

measurements, it became possible to detect neurons very precisely, as indicated by well-

defined increases in pipette resistance, during the neuron hunting stage (stage 2).   

 

In published neuron hunting protocols, a visually identified increase of 20-50% in 

pipette resistance was considered to be indicative of the presence of a viable neuron, 

appropriate for attempting gigaseal and break-in stages60, 61, 66.  One advantage of a 

robotic system is that it can analyze sequences of pipette resistance values acquired over 

a series of successive motor steps, thus enabling precise signatures of neuron presence 

that algorithmically replicate the intuitive comparisons being performed by trained 

human investigators.  We systematically explored this parameter space, varying the 

number of consecutive 2 µm steps over which pipette resistance values would be 

considered, and also varying the numerical threshold that the pipette resistance would 

have to increase over these steps in order for a neuron detection to be concluded, aiming 

to maximize the success of manually establishing whole-cell patch clamping for each 
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neuron-hunting procedure.  We found analysis of only 2 consecutive motor steps (i.e., 

pipette resistance data over 4 µm of travel) to yield noisy data, and 4 consecutive steps 

(i.e., over 8 µm of travel) to detect the neuron too late to get good recordings, perhaps 

because the cell was stretched.  Thus, we focused our analysis on pipette resistance 

sequences taken over 3 consecutive steps (6 µm).  Because the measurement-to-

measurement variability on consecutive motor steps (see above) was about 136 kΩ, we 

chose to investigate thresholds of pipette resistance increase between the first and third 

step of 150, 200, 250, 300, 350, and 400 kΩ.  We found that first-to-third step differences 

of at least 200-250 kΩ yielded patchable neurons at success rates of 40-45% (11 cells out 

of 25 were manually successfully gigasealed and broken-into).  In contrast, 3-step 

sequences with <200 kΩ thresholds or >300 kΩ thresholds had much lower success rates 

of manual gigasealing and breaking-into (5-15% yields; 4 out of 27), perhaps due to 

errors in neuron detection or approach (false positives for the lower thresholds; cell 

stretching for the higher thresholds).  Thus, we chose for the robot a 200 kΩ threshold for 

pipettes of 3-5 MΩ initial resistance, and 250 kΩ for pipettes of 5-9 MΩ initial 

resistance.  In the final robot validation test set (Table 2.2), we found that this neuron 

hunting algorithm converged upon targets within the localized region 93% of the time 

(114 targets detected out of 123 total trials); of these 114, 47 cells ultimately resulted in a 

patch recording (cell-attached or whole-patch patched), or a yield of 41% - similar to the 

40-45% rate obtained during the pilot studies using manual validation, mentioned earlier 

in this paragraph. 
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For comparison purposes, we evaluated the value of observing heartbeat 

modulation as an indication of neuronal detection.  According to ref.19, 66, “The best 

predictor of the pipette having made contact with a neuronal membrane was pulsation of 

the reduced current pulse at heartbeat frequency…  Slow changes in current pulse 

amplitude that lacked the rhythmic modulation rarely resulted in neuronal recordings…  

one of the trademark characteristics of the ‘strike’ of the pipette against neuronal 

material is pulsation of the recorded current at heartbeat frequencies. In our experience 

this is the best indicator of the patch pipette making contact with neuronal material. 

While there were instances in which this pulsation was due to contact with non-neuronal 

membranes, presumably glia or blood vessels, this occurred less than 5% of the time.”  In 

order to determine whether heartbeat modulation of pipette currents was also a good 

indicator of neuronal detection in our hands, we used the autopatching robot to record n = 

17 neurons, keeping attuned to the presence or absence of heartbeat modulation.  All 17 

neurons patched exhibited, at the point of completion of the “neuron hunting” stage, a 

prominent heartbeat modulation (see Fig.2.3.2 a-c for examples), in full accordance with 

the Margrie et al. paper.  Thus, in principle, heartbeat modulation could be added as a 

confirmatory check in the algorithm, although we did not find it necessary; it appears that 

our algorithms’ search for a monotonically increasing pipette resistance recapitulates the 

same essential process that takes place in the heartbeat detection procedure. 

 

We note that we often saw heartbeat modulation sometimes, but not always, when 

the patch pipette was 10 µm away from the neuron (e.g., five 2 µm steps before the 

pipette halted and the “neuron hunting” stage ended; Fig. 2.3.2c); this occurred 6 out of 
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the 17 times, and may indicate that heartbeat modulation may occur even before the 

pipette resistance increases, and thus when a neuron has not been quite detected.  (This 

neuron-selectivity that our algorithm encapsulates may explain why ~90% of the 

structures we patched were neuronal, with only ~10% glial.   

    

 

Figure 2.3.2. Evaluating raw current traces recorded during “neuron hunting” 
stage. Shown are patch pipette currents obtained when a square voltage wave (10 Hz, 10 
mV during “neuron hunting” stage) is applied to the pipette in voltage clamp mode.  The 
left traces in a-d are current traces measured 10 mm before the pipette was stopped at the 
end of “neuron hunting” to attempt “gigasealing”.  The right traces in a-d are current 
traces measured at the point the pipette was stopped at the end of neuron hunting.  Trials 
a-c culminated in successful whole cell patch clamp recording, while d did not result in 
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successful gigaseal, and subsequently was unsuccessful in establishing whole cell as well.  
Comparing the successful trials, while the left traces in a and b show no heart beat 
modulation at distance from the neuron, the left trace in c shows heartbeat modulation of 
the current traces even 10 µm away from point of stoppage.  The right traces in a-c all 
show prominent heartbeat modulation at the point of stoppage; this is not seen in the right 
trace in d. 
 

 

Why so few glia and non-excitable structures?  It is possible that we are actually 

encountering a lot of these, but we are not sealing well on to them with our current 

pipette shape and search algorithm.  Remember, although most of the cells we patched 

indeed were neurons – the patch algorithm did not form good gigaseals typically ~50% of 

the time – and those targets may be with connective tissue, glia, blood vessels, etc.  This 

is consistent with the strong neuron selectivity of papers such as ref. as mentioned 

above.)  Notably; we also analyzed n = 26 attempts in which neuron hunting halted on an 

object (perhaps a cell, or a piece of connective tissue), but which did not yield a gigaseal 

(e.g., Fig. 2.3.2d); in 24 such cases (such as the one shown in Fig.2.3.2 d right), there 

was no heartbeat modulation; in the remaining two cases, extreme heartbeat modulation 

was seen (perhaps suggesting a blood vessel to be there).   Thus again, heartbeat 

modulation could be used to confirm our algorithm, but given the complexity in 

automating heartbeat modulation analysis (heartbeat, after all, varies greatly in shape and 

frequency from cell to cell, mouse to mouse, and depending on anesthesia protocol), we 

decided to stick with the simpler-to-automate monotonic pipette resistance criterion for 

our algorithm.  It is possible, however, given our independent confirmation of the 

heartbeat modulation criterion, that heartbeat modulation, given its prominent visual 

pattern, is still one of the best methods for human use for neuron detection.  In principle, 



 25 

future versions of the algorithm that take heartbeat modulation into account, might enable 

failed gigaseal trials to be ended early, thus saving several seconds per cell of time, and 

speeding up the robot still more. 

 

The gigaseal formation stage (stage 3, Fig 2.2.2 and Fig 2.3.1) was adapted from 

the best practices of prior protocols, aiming for a stereotyped sequence of steps amenable 

to automation.  The motor was switched off after neuron hunting completion, and a 10 

second wait period was imposed to see if the pipette resistance decayed back to baseline 

(this happened 1 time out of the 114 successful hunts; the motor simply reactivated and 

the neuron-hunting phase resumed).  Then the positive pressure was released, suction 

pressure was applied if the gigaseal was not spontaneous, and the holding potential was 

reduced slowly to -65 mV (see Fig. 2.3.1, “gigaseal formation” for the detailed 

description of the series of steps).  If a gigaseal was not apparent at the end of this 

procedure, the algorithm was halted (although, these could be considered loose-cell 

attached patches – of interest because of the excellent single cell isolation offered, even if 

subthreshold and synaptic events are not observable as in the whole-cell case); else, the 

gigaseal was left until it plateaued for at least 10-15 seconds (see Fig. 2.4.1 for example).  

In the final robot validation test set (Table 2.2.1), of the 114 targets detected by “neuron 

hunting”, 52 formed gigaseals (46% yield) under the operation of the robot.   

 

The final stage was break-in (stage 4), and again, we aimed for a procedure that 

would be easily and objectively automated.  The robot applied suction for periods of 1 

second, and then precisely activated the “zap” function of the patch amplifiers (a 200 µs 



 26 

voltage pulse to 1 V), repeatedly every 5 seconds until the whole-cell configuration was 

obtained.  In this scenario, we reserved the judgment of the whole cell state for a human 

observer, who could then halt the program, because we were seeking to analyze the 

quality of our recordings; the stereotyped changes due to the cell capacitance and 

resistance being appended to the pipette are also quantifiable to the extent of yielding 

automation of program cessation, if desired.  In the final robot validation test set, the 52 

gigasealed neurons were split into two sets:  28 underwent break-in with the robot, and 24 

were manually broken-into in order to evaluate the success of our automated break-in 

procedure.  Out of the 28 automatically broken-in trials, 23 successfully attained whole-

cell mode (82% success); failures (5 cells) were stringently defined as a lack of break-in, 

“losing” the cell within 5 minutes of attaining whole-cell recording, or exhibiting >500 

pA of holding current (at -65 mV).  For the 24 other cells, we achieved manual whole-

cell break-in in 100% of the cells using standard methods, applying brief suction pulses 

in rapid succession66. 

 

We incorporated a second method of automated in vivo patching using suction 

pulses to achieve the break-in step (algorithm described in Fig. 2.3.3).   
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Figure 2.3.3.  The algorithm of Fig. 2.3.1, modified to use suction pulses instead of 
“zap”, to break in.  The algorithm for automated in vivo patch clamping when using 
“suction pulses” for the break-in stage, rather than “zap,” to establish the whole cell state.  
All symbols, shadings, headers, etc. are as in Fig. 2.3.1. 
 

Once the gigaseal is established, the experimenter needs to manually increase the 

suction pressure in the suction port (Fig. 2.2.1 Fig. 2.12.1) to –150 to –250 mBar; 

alternatively, an additional valve and an additional pressure source could be utilized.  

When activated, the robot applies suction for a period of 100 ms, repeatedly, every 5 

seconds, until whole cell configuration is established.  Out of the 30 trials where the 

‘suction pulse’ method was employed to break-in, 25 successfully attained whole-cell 
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mode (83.3%). It is clear that the objective and systematic analysis of how in vivo patch 

clamping occurs, coupled to precision measurement and well-timed robotic control of 

pipette movement and pressure control, enables automation of the steps at which humans 

ordinarily require extensive practice to master. 

 

2.4. Timecourse of operation of the autopatcher, and quality of patch outcomes 

 

A representative autopatcher run, plotting the pipette resistance versus time, is 

shown in Fig. 2.4.1A, with key events indicated by Roman numerals; raw current traces 

resulting from the continuously applied voltage pulses, from which the pipette resistances 

were derived, are shown in Fig. 2.4.1B.  The key neuron detection step, in which the 

robot tracks the pipette resistance across three consecutive 2 µm steps, and then halts 

movement upon detection of the sequence of changes described above, occurs between 

events i and ii.  Note the small visual change in pipette currents observed in the raw 

traces between i and ii (Fig. 2.4.1Bi vs Bii); the ability of the robot to detect this small 

change, and halt pipette motion immediately, helped to greatly increase yield, as 

described above.  At event iii, the autopatcher releases positive pressure, and the gigaseal 

process begins, assisted by the application of suction at event iv because the robot 

detected that seal resistance was not increasing quickly enough.  At event v, the holding 

potential jumps down to -30 mV, and then ramps down to -65 mV, event vi.  At event vii, 

the gigaseal has fully asymptoted, and the user has the option to halt the program (for 

gigaseal cell-attached patch) or launch the break-in procedure (for whole cell patch 

clamp).   
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Figure 2.4.1. Timecourse of autopatcher operation.  A, Representative trajectory of 
pipette resistance (the key parameter analyzed to control robot operation throughout the 
algorithm of Fig. 2.3.1 and Fig. 2.3.3) throughout a successful whole-cell patch clamp 
experiment performed on the autopatcher, starting with the “neuron hunting” stage and 
ending with successful whole cell attainment, top: The entire process from start of 
neurons hunting to break in, bottom: focusing on the smaller resistance changes in the 
neuronhunting stage. Stages are indicated at top (neuron hunting, etc.); Roman numerals 
flag specific events within those stages.  i, the first of three resistance measurements that 
indicate the threshold of detection of a neuron; ii, the last of three resistance 
measurements that indicate the threshold of detection of a neuron; iii, the point at which 
positive pressure is released during gigaseal formation; iv, the point at which suction is 
applied during gigaseal formation; v, the point at which holding potential starts to ramp 
down from -30 mV to -65 mV; vi, the point at which holding potential hits -65 mV; vii, 
the point at which break-in occurs.  B, Raw traces showing the currents observed going 
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through the patch pipette, while a square voltage wave (10 Hz, 10 mV) is applied to the 
pipette, at the events flagged by the corresponding Roman numerals in A.  The 
resistances used throughout the algorithm for decision-making are computed by taking 
the average of the resistances calculated (using Ohm’s law, R = (peak V)/(peak I)) from 
each set of five successive voltage pulses.   
 

 

 

Figure 2.4.2: Time durations of neuron hunting and gigasealing: A, Histogram of 
execution times of the “neuron hunting” stage, showing the duration of operation of 
neuron hunting for the n = 47 targets successfully gigaseal-cell-attached-patched and 
whole cell patched B, Histogram of execution times of the “gigaseal formation” and 
“break-in” phases, if the latter applied, for the n = 47 cells for which we obtained 
successful cell-attached or whole-cell recordings.  Note: the “break-in” phase lasts 
typically just 1-10 seconds, so whole-cell recordings usually take only a little longer to 
obtain than do cell-attached recordings, and thus both sets of times are pooled, for 
simplicity, in the current histogram.  C, Histogram of execution times for the total 
autopatcher algorithm starting from neuron-hunting and ending with patch attainment 
(i.e., the sum of the times plotted in A and B). 
 

The entire process takes about 3.5 minutes for this cell; for the gigaseal cell-

attached and whole-cell patched neurons studied in detail here, the population mean and 

standard deviation was 5.1 + 1.8 minutes from the beginning of neuron hunting to the 

establishment of recording (Fig. 2.4.2C; n = 47 neurons).  The neuron-hunting stage took 

on average 2.5 +1.7 minutes (Fig. 2.4.2A, n = 47), with the time to find a target that later 

led to successful gigaseal not differing significantly from the time to find a target that 
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does not lead to a gigaseal (p > 0.80; t-test; n = 67 unsuccessful gigaseal formation trials), 

that is, failed trials did not take longer than successful ones.  The gigaseal formation took 

2.6 + 1.0 minutes (Fig. 2.4.2B), including for the whole cell autopatched case the few 

seconds required for break-in; failed attempts to form gigaseals were truncated at the end 

of the ramp down procedure and thus took ~85 seconds.  These durations are similar to 

those obtained by trained human investigators practicing published protocols37. 

 

2.5 Quality of the recordings obtained by the autopatcher. 

 

Neurons recorded using the autopatcher in whole cell mode exhibited, in current 

clamp, voltage traces of sufficient quality to perform experiments involving either control 

of the neuron (top traces in Fig. 2.5.1A and 2.5.1B, showing responses of cortical 

neurons and hippocampal neurons respectively, to current injection), or passive 

observation of the neuron (bottom traces in Fig. 2.5.1A and 2.5.1B).  For example, 

rhythmic changes in resting potential reminiscent of up and down states were clear in 

cortical recordings (Fig. 2.5.1A, bottom traces), but less so in the hippocampus (Fig. 

2.5.1B, bottom traces).  
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Figure 2.5.1.  Examples of data acquired from autopatched cells. A, Current clamp 
traces during current injection (top; 2 s-long pulses of -60, 0, and +80 pA somatic current 
injection, for both cells), and at rest (bottom; note significantly compressed timescale 
relative to the top trace), for two cortical neurons for which whole cell patch clamp was 
established via autopatcher.  B, Current clamp traces during current injection (top; 2 s-
long pulses of -60, 0, and +40 pA somatic current injection, for the left cell, and -60, 0, 
and +100 pA, for the right cell), and at rest (bottom; note significantly compressed 
timescale relative to the top trace), for two hippocampal neurons for which whole cell 
patch clamp was established via autopatcher. 
 

We evaluated a number of measures of whole cell patch clamp quality (Fig. 5) for 

neurons obtained at various depths, both in the cortex and in the hippocampus (n = 23 

neurons, closed symbols).  
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Figure 2.5.2.  Access resistance of in vivo neural whole cell recordings.  A, I, Plot of 
the access resistances obtained versus pipette depth and ii, bar graph summary of access 
resistances (mean + std. dev.), for the final robot validation test set of automatically 
whole-cell patched neurons (closed symbols; n = 23), for the final robot validation test set 
of automatically cell-attached patched neurons (open symbols, n = 24, showing the data 
acquired after manual break-in following the conclusion of the automatic establishment 
of the gigaseal cell-attached state) and comparative results from completely manual 
whole cell patch clamping (grey symbols, n = 17), for cortical neurons (circles; 
anteroposterior, 0 mm relative to bregma; mediolateral, 0-1 mm left or right of the 
midline; neuron hunting begins at Zu = 400 µm depth) or hippocampal neurons 
(triangles; anteroposterior, -2 mm relative to bregma; mediolateral, 0.75-1.25 mm left or 
right of the midline; neuron hunting begins at Zu = 1100 µm depth).   
 

 

As mentioned above, we also manually broke into the cells that were obtained in 

gigaseal cell-attached mode (n = 24 neurons, open symbols), to evaluate the quality of the 

cells that were recorded in cell-attached mode, since few quality measures are available 

in cell-attached mode. All parameters are reported in uncompensated form (e.g., no series 

resistance or capacitance compensation), obtained using the conventional patch clamp 
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software after autopatcher program completion.  The first parameter we evaluated (Fig. 

2.5.1) was the resultant pipette access resistance after obtaining whole cell mode; typical 

ranges obtained in vivo for blind whole-cell recording by trained human investigators are 

40-120 MΩ (in cortex of young rats60), 20-30 MΩ (in olfactory bulb of young mice60) 

and 35-60 MΩ (in hippocampus of adult mice61) .  Our pipette access resistances were 

48.0 + 24.5 MΩ  (n = 18, auto-whole-cell patched, cortex), 44.5 + 14.9 MΩ (n = 19, 

auto-gigaseal-cell-attached patch followed by manual break-in, cortex), 54.4 + 9.6 (n = 5, 

auto-whole-cell patched, hippocampus), and 39.5 + 17.8 MΩ (n = 5, auto-gigaseal-cell-

attached patch followed by manual break-in, hippocampus), squarely in the ranges above.  

We performed a linear regression of pipette access resistance vs. neuron recording depth, 

and saw no relationship (R2  = 0.007, p > 0.08), suggesting that our robot performed 

similarly at depth as at the surface.  
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Figure 2.5.3.  Holding currents of in vivo neural whole cell recordings.  A, I, Plot of 
the holding currents needed to hold the neurons at -65 mV in voltage clamp mode versus 
pipette depth and ii, bar graph summary of holding currents (mean + std. dev.), for the 
final robot validation test set of automatically whole-cell patched neurons (closed 
symbols; n = 23), for the final robot validation test set of automatically cell-attached 
patched neurons (open symbols, n = 24, showing the data acquired after manual break-in 
following the conclusion of the automatic establishment of the gigaseal cell-attached 
state) and comparative results from completely manual whole cell patch clamping (grey 
symbols, n = 17), for cortical neurons (circles; anteroposterior, 0 mm relative to bregma; 
mediolateral, 0-1 mm left or right of the midline; neuron hunting begins at Zu = 400 µm 
depth) or hippocampal neurons (triangles; anteroposterior, -2 mm relative to bregma; 
mediolateral, 0.75-1.25 mm left or right of the midline; neuron hunting begins at Zu = 
1100 µm depth).   
 

Similarly, we evaluated the holding current required to keep the neuron at -65 mV 

(Fig. 2.5.3) and the neuron resting potential when zero current is injected (Fig. 2.5.4).  

Commonly, the goal is to obtain cells that have a membrane potential lower than -55 

mV24, 31, 37, 60, 61, 66.  The mean and standard deviation of the holding currents, across both 

regions and conditions, was -63 + 124 pA, and the resting potential was -61.9 + 7.1 mV 

(n = 47).  Finally, we analyzed the holding times over which we could record cells.   
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Figure 2.5.4.  Resting membrane potentials of in vivo neural whole cell recordings.  
A, I, Plot of the resting membrane potentials in current clamp mode versus pipette depth 
and ii, bar graph summary of holding currents (mean + std. dev.), for the final robot 
validation test set of automatically whole-cell patched neurons (closed symbols; n = 23), 
for the final robot validation test set of automatically cell-attached patched neurons (open 
symbols, n = 24, showing the data acquired after manual break-in following the 
conclusion of the automatic establishment of the gigaseal cell-attached state) and 
comparative results from completely manual whole cell patch clamping (grey symbols, n 
= 17), for cortical neurons (circles; anteroposterior, 0 mm relative to bregma; 
mediolateral, 0-1 mm left or right of the midline; neuron hunting begins at Zu = 400 µm 
depth) or hippocampal neurons (triangles; anteroposterior, -2 mm relative to bregma; 
mediolateral, 0.75-1.25 mm left or right of the midline; neuron hunting begins at Zu = 
1100 µm depth).   
 

Out of the 47 cells from which we obtained stable recordings, we terminated 14 

recordings early (30-45 minutes) in order to try for more cells; for the remaining 33 cells, 

the recordings lasted 56.6 + 44.2 minutes (with 25 cells lasting longer than 30 minutes), 

comparable to or exceeding the performance of trained human investigators.   
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Figure 2.5.5.  Holding times of in vivo neural whole cell recordings.  A, I, Logarithmic 
plot of the holding currents needed to hold the neurons at -65 mV in voltage clamp mode 
versus pipette depth and ii, bar graph summary of holding currents (mean + std. dev.), for 
the final robot validation test set of automatically whole-cell patched neurons (closed 
symbols; n = 23), for the final robot validation test set of automatically cell-attached 
patched neurons (open symbols, n = 24, showing the data acquired after manual break-in 
following the conclusion of the automatic establishment of the gigaseal cell-attached 
state) and comparative results from completely manual whole cell patch clamping (grey 
symbols, n = 17), for cortical neurons (circles; anteroposterior, 0 mm relative to bregma; 
mediolateral, 0-1 mm left or right of the midline; neuron hunting begins at Zu = 400 µm 
depth) or hippocampal neurons (triangles; anteroposterior, -2 mm relative to bregma; 
mediolateral, 0.75-1.25 mm left or right of the midline; neuron hunting begins at Zu = 
1100 µm depth).  Shown are both recording times which were terminated early, as well as 
recording times terminated by spontaneous loss of the cell. 
 

Finally, we summarize the cell membrane characteristics as well as the gigaseal 

resistances obtained in the three different methods that were used in Fig. 2.5.6. 
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Figure 2.5.6 Cell characteristics after completion of autopatching or manual 
patching using the algorithm of Fig. 2.3.1.  Histograms summarizing the whole cell 
patch clamp properties of the neurons described in Figure 2.3.1 for which recordings 
were either automatically established in (a) whole cell state (n = 23 cells), or  (b) gigaseal 
state followed by manual break-in to verify cell properties (n = 24 cells), or (c) fully 
manual whole cell patch clamping (n = 15 cells), measured in voltage clamp at –65 mV, 
including i, gigaseal resistance after gigaseal formation, ii, access resistance after break-
in (~5 minutes after break-in), iii, cell membrane capacitance, and iv, cell input 
resistance. 
 

A single robot might be capable of recording 50-100 cells a day, and a single 

human operator should be able to run several robots.  Thus, new kinds of experiment, like 
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the systematic classification of cell types by their electrophysiological properties, in a 

diversity of behavioral and brain disorder contexts, might be possible.  We note that the 

gigaseal resistances, membrane capacitances, and membrane resistances of the neurons 

both auto-whole-cell patched (Fig. 2.5.2) and manually broken into after auto-gigaseal-

cell-attached patching spanned the ranges of what we would expect given prior cortical 

and hippocampal patching experiments37, 60, 61, 66, 69, suggesting that with automation, the 

robot did not incur sacrifices in cell quality.   

 

2.6. Statistical comparison of quality of autopatched neurons with fully manual 

patched neurons. 

 

Comparing the cell quality metrics between the n = 23 auto-whole cell patched 

neurons and the 15 fully manually patched neurons. No difference between auto-whole-

cell patched and fully manually patched neurons was noted for access resistances (two-

way ANOVA; main effect of method of patching, F1,33 = 0.92, P = 0.5116; main effect of 

region (cortex vs hippocampus), F1,33= 1.73, P = 0.4175; interaction, F1,33 = 0.14, P = 

0.706, holding current (two-way ANOVA; main effect of method of patching, F1,33 = 

0.83, P = 0.5382; main effect of region, F1,33 = 0.12, P = 0.7819; interaction, F1,33 = 0.38, 

P = 0.5432), or resting membrane potential (two-way ANOVA; main effect of method of 

patching, F1,33 = 1.16, P = 0.4758; main effect of region, F1,33 = 0.72, P = 0.5539;  

interaction, F1,33 = 5.873, P = 0.0218).  Out of the 47 neurons from which we obtained 

stable recordings, we terminated 14 recordings early (30-45 minutes) in order to try for 

more cells; for the remaining 33 cells, the recordings lasted 56.6 + 44.2 minutes (Fig. 

2.5.5).  No difference in cell holding times was noted between auto-whole-cell patched 
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and fully manually patched neurons (two-way ANOVA; main effect of method of 

patching, F1,33 = 3.19, P = 0.3279; main effect of region, F1,33 = 0.19, P = 0.7317; 

interaction, F1,33 = 1.08, P = 0.3016).  Finally, no difference between auto-whole-cell 

patched and fully manually patched neurons was noted for gigaseal resistance (two-way 

ANOVA; main effect of method of patching, F1,33 = 1.85, P = 0.1809; main effect of 

region, F1,33 = 0.12, P = 0.7267; interaction, F1,33 = 6.02, P = 0.0192), cell membrane 

capacitance (two-way ANOVA; main effect of method of patching, F1,33 = 0.96, P = 

0.9578; main effect of region (cortex vs. hippocampus), F1,33 = 2.91, P = 0.09628;  

interaction, F1,33 = 0.7, P = 0.4021), or cell input resistance (two-way ANOVA; main 

effect of method of patching, F1,33 = 1.47, P = 0.2327; main effect of region, F1,33 = 0.25, 

P = 0.2417;  interaction, F1,33 = 0.06, P = 0.8182). 

 

2.7. The cell types patched by the autopatcher 

 

Using the cell type criteria of references70, 71, we found that of the 47 autopatched 

neuronal recordings from cortex and hippocampus analyzed in Fig. 2.5.1, Fig. 2.5.2, Fig. 

2.5.3, Fig. 2.5.4 and Fig. 2.5.5, 68% (32/47) exhibited regular spiking (RS) 

characteristics, 4% (2/47) exhibited burst firing patterns, 13% (6/47) exhibited irregular 

spike characteristics, 4% (2/47) exhibited spikes followed by smaller spikelets suggestive 

of back propagation of action potentials in dendritic recordings, and 2% (1/47) had 

accelerating spike firing characteristics.  In 9% (4/47) of the neurons, steady current 

injection resulted a in single action potential followed by plateaued depolarizing current, 

with no further spike firing, indicating fast adapting neurons.   It is likely that all cell 

recording strategies have some bias in what kinds of cells they record; extracellular 
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recording methods, for example, might favor neurons capable of creating large 

extracellular fields that result in easily sortable spikes for example (papers such as ref. 26 

comment on how difficult it is to record small neurons like cerebellar granule cells via 

extracellular recording).  A recent in vivo patch clamping paper, ref. 72 points out, "Most 

of the recorded cells were pyramidal cells and their recovered morphologies typically 

included an apical dendrite …”, which would be consistent with our apparent high yield 

of neurons, especially pyramidal neurons, as noted in this paragraph and in the fills (Fig 

2.8.1). 

 

2.8. Morphology of autopatched neurons via biocytin filling 

  

In a subset of experiments we added 0.1-0.5% biocytin to the intracellular pipette 

solution to attempt filling the neuron with biocytin for morphological analysis. Once 

whole cell configuration was established, the cells were typically held in this 

configuration for atleast 10 minutes, giving enough time for the biocytin in the 

intracellular solution to diffuse into the cell. At the end of the recordings the pipette was 

withdrawn slowly at the rate of 3 µm/s for a distance of 150 µm, which typically resulted 

in the formation of an outside out patch. As demonstrated previously, this technique can 

be used to reseal the cell membrane and confine the diffused biocytin to the recorded cell. 

After the experiment, this biocytin filled cell could be visualized after 

immunohistochemical staining. Figure 2.8.1 shows some representative confocal 

microscope images of biocytin filled neurons obtained using this technique. We were 

able to recover and identify the morphology of neurons unambiguously in 72% (n= 15 
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out of 21 filled cells) of the trials. In other trials, the background staining resulting from 

the intracellular pipette solution ejected out of the pipette under high pressure during the 

initial descent to depth (“Regional pipette localization” stage) made it difficult to isolate 

the single neuron recorded from.  

 
 

Figure 2.8.1. Neurons filled with biocytin, and visualized with Alexa 594-

streptavidin, after recording by the autopatching robot.  Each panel shows a neuron 

recorded at 500-800 µm depth below the brain surface, 0-2 mm left or right of midline, 0-

2 mm anterior of bregma.  Scale bars, 50 µm. 
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2.9. Results from recordings where the autopatcher used suction pulses as a method 

for breaking in 

 

As an alternate method, we iterated a second algorithm that used 200-500 ms 

pulses of suction (-150 to -200 mBar) to break in to the cells after gigaseal was obtained. 

We obtained stable whole cell recordings from 25 neurons in the cortex at depths ranging 

from 400 µm to 1000 µm. The access resistances, the holding currents, the holding 

potentials are plotted against the recording depth as shown in Fig. 2.9.1. We did not see 

any differences in these parameters when compared to the neurons that were broken in 

using the suction with zap method, presented before. We did not characterize the holding 

times of these neurons, as its is expected that they will have similar times to the previous 

method. Instead we limited these recordings to 10 minutes, and attempted to estimate the 

success success rates that can be obtained along the whole time of the experiment. This is 

plotted in Fig. 2.9.1d. It can be seen that the success rate of the recordings can be as high 

as 60% in the first hour after the acute craniotomy is opened, and deteriorates over time, 

possibly because of tissue damage, greater motion artifacts of the brain as the animal 

goes deeper into anesthesia.  
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Figure 2.9.1.  Quality of recordings obtained using the autopatcher using the 
‘suction pulses’ method for break-in and achieving the whole cell state, as described 
in Fig. 2.3.3.  (a) Plot of the access resistances obtained versus pipette depth for set of 
neurons for which whole cell state was established using the algorithm of Fig.2.3.3, in 
which the “zap” is replaced by suction pulses.  n = 25 cortical neurons were successfully 
broken in to, out of 30 successful gigaseals, out of 61 total attempts starting with regional 
pipette localization (anteroposterior, 0 mm relative to bregma; mediolateral, 0-1 mm left 
or right of the midline; neuron hunting begins at 400 mm depth).  Thus the break-in rate 
was 83% of the gigasealed neurons (not different from the break-in rate for zap-mediated 
break in, Fig. 2.3.1; chi-square = 0.001, P = 0.8023), and total yield from start of the 
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algorithm was 41%.  (b) Plot of the resting potentials obtained versus pipette depth, for 
the neurons described in a.  (c) Plot of the holding currents obtained versus pipette depth 
for the neurons described in a.  The recordings lasted at least 15 minutes, but we 
terminated the recordings early in order to focus more on the understanding of whether 
suction pulses would work in the autopatcher algorithm. (d) Bar graph of average success 
rates obtained in each hour of recording after surgery (n = 3 experimental sessions; 
plotted is mean + standard deviation).  (e) Histograms summarizing the whole cell 
properties of the automatically whole-cell patched neurons broken in using suction pulses 
method, showing good quality recordings equivalent to those obtained by zap method of 
break-in, measured in voltage clamp at –65 mV, including i, gigaseal resistance after 
gigaseal formation, ii, access resistance after break-in (~5 minutes after break-in), iii, cell 
membrane capacitance, and iv, cell input resistance.   
 

2.10. Throughput of the autopatcher 

 

Is the autopatcher a “high throughput” machine?  Perhaps, not in terms of sheer 

speed per cell (currently), although certainly the autopatcher can sustain its work without 

getting tired or bored, as a human might.  We did a series of experiments, automatically 

recording in each of 3 mice, 7-8 successfully whole cell patch clamped neurons (total for 

the 3 mice, 22 successes), out of 16-20 attempts (total for the 3 mice, 52 attempts; yield, 

42%); surgeries would take 41 + 6 minutes beginning from anesthesia of the mouse and 

ending with the exposed brain ready for recording; then, for each cell, pipette filling and 

installation (removing any used pipette, of course) would take 2 ± 0.4 minutes, followed 

by the autopatcher establishing whole cell patch clamp in 5 ± 2 minutes.  We limited the 

recording time for each cell to 15 minutes, arbitrarily, but shorter or longer times may be 

of course utilized, depending on the science at hand.  Thus, the amount of time required 

to record n neurons successfully, for a desired recording time T, would be approximately: 

 

40 + n / .42 * 7 + n / .42 * T minutes 
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The surgeries, of course, could be done in advance to equip mice with headplates 

to minimize day-of-recording time expenditure. Thus, during an 8 hour day, ~25 neurons 

might be successfully recordable in a single mouse, if the recording times were very 

short; this doesn’t take into account the important consideration of cell displacement that 

could result from an electrophysiological experiment, thus reducing yield over time.  

Strategies can be devised to limit the impact of cell displacement or damage from 

impacting yield, for example, patching neurons in higher regions before patching those in 

lower ones.  The autopatcher travels, on average, 150 ± 112 microns in the cortex during 

the neuron hunt phase, before hitting the neuron (n = 22 cells); this short travel distance 

suggests that the pipette might well be hitting the very first cell that it is allowed to 

encounter (e.g., is approaching under low pressure).  Smaller diameter pipettes, even 

down to 100-200 mm in diameter, are easily available (albeit more difficult for humans to 

handle), and so this might not be a fundamental limit on scale.  Or, it is possible that 

patching neurons in varying brain regions could result in very high fidelity recordings, 

although again, the science would have to match with this goal. 

 

Also important to note:  if it takes 2 minutes to load a pipette, and 5 to obtain a 

cell and another T minutes to do a recording, it would in principle be possible for a single 

individual to run (5+T)/2 rigs at once; for 15 minute recording times, that would make for 

10 rigs being simultaneously controlled by one employee.   

 

2.11. Recordings in awake, headfixed mice using the autopatcher 
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As a final note, we attempted to use the same algorithm described previously in 

Fig. 2.3.1 and Fig. 2.3.3 to record from headfixed awake mice. These experiments were 

conducted in n=2 mice. We obtained stable whole cell recordings from 3 neurons (out of 

18 attempts). A representative voltage trace recorded from a cortical neuron in current 

clamp mode is shown in Fig. 2.11.1.  We were able to record from these neurons for 3, 

25, and 31 minutes which indicates that it is possible to get stable recordings in awake 

headfixed preparations, although the low yield indicates further work needs to be done to 

develop algorithms that can be used to account for higher degree of motion of the brain, 

which is an artifact of the awake state. 

 

Figure 2.11.1: Recordings obtained with the autopatcher in awake headfixed mice: 
A representative voltage trace recorded in current clamp mode from a neuron in the 
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motor cortex. The recording remained stable for 28.4 minutes. Access resistance 46.2 
MΩ, membrane resistance of 74.9 MΩ, and membrane capacitance 23.6 pF.  
 

2.12. Experimental Methods 

2.12.1 Surgical procedures 

 

All animal procedures were approved by the MIT Committee on Animal Care.  

Adult male C57BL/6 mice (Taconic), 8-12 weeks old, were anesthetized using 

ketamine/xylazine (initially at 100 mg/kg and 10 mg/kg, and redosed at 30-45 minute 

intervals with 10-15% of the initial ketamine dose as needed, using toe pinch reflex as a 

standard metric of anesthesia depth).  The scalp was shaved, and the mouse placed in a 

custom stereotax, with ophthalmic ointment applied to the eyes, and with Betadine and 

70% ethanol used to sterilize the surgical area.  Three self-tapping screws (F000CE094, 

Morris Precision Screws and Parts) were attached to the skull and a plastic headplate 

affixed using dental acrylic, as previously described73.  Once set (~20 minutes), the mice 

were removed from the stereotax and placed in a custom-built low profile holder.  A 

dental drill was used to open up a craniotomy (1-2 mm diameter) by thinning the skull 

until ~100 µm thick, and then a small aperture was opened up with a 30 ga needle tip.  It 

is critical to ensure that bleeding is minimal and the craniotomy is clean, as this allows 

good visualization of the pipette, and minimizes the number of pipettes blocked after 

insertion into the brain. The dura was removed using a pair of fine forceps. The 

craniotomy was superfused with artificial cerebrospinal fluid (ACSF, consisting of 126 

mM NaCl, 3 mM KCl, 1.25 mM NaH2PO4, 2 mM CaCl2, 2 mM MgSO4, 24 mM 
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NaHCO3, and 10 mM glucose), to keep the brain moist until the moment of pipette 

insertion.  

For experiments where we attempted awake patch clamp recordings, the animal 

was anesthetized using 1-2% isoflurane, and surgical procedures for headplate fixing was 

carried out as described above with the animal administered with analgesic analgesic 

buprenorphine subcutaneously (0.1 mg/kg) and 1-2 mg/kg Meloxicam subcutaneously, as 

a supplementary analgesic. The mice were allowed to recover from surgery for 2-3 days 

before the recordings were attempted. On the day of the recordings, the animals were 

anesthetized for a second time with 1-2% isoflurane, and the craniotomy performed. The 

animals were headfixed in the custom low profile holder and allowed to recover from 

anesthesia, before the commencement of the autopatcher recordings. 

 

2.12.2 Experimental Methods: Electrophysiology.   

 

Borosilicate glass pipettes (Warner) were pulled using a filament micropipette 

puller (Flaming-Brown P97 model, Sutter Instruments), within a few hours before 

beginning the experiment, and stored in a closed petri dish to reduce dust contamination. 

We pulled glass pipettes with resistances between 3-9 ΜΩ.  The intracellular pipette 

solution consisted of (in mM): 125 potassium gluconate (with more added empirically to 

bring it up to ~290 mOsm), 0.1 CaCl2, 0.6 MgCl2, 1 EGTA, 10 HEPES, 4 Mg ATP, 0.4 

Na GTP, 8 NaCl (pH 7.23, osmolarity 289 mOsm), similar as to what has been used in 

the past74.  For biocytin staining, 500 µM of Alexa Fluor 594 biocytin, sodium salt 

(Invitrogen) was added to the pipette solution.  We performed manual patch clamping 
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using previously described protocols60, 66, with some modifications and iterations as 

explained in the text, in order to prototype algorithm steps and to test them. 

 

2.12.3 Experimental Methods: Robot construction 

 

 
 
Figure 2.12.1  Diagram depicting configurations of the three pneumatic valve bank 
during the stages of autopatcher operation, depicted in Fig. 2.2.1.  “x” represents 
closed valve; line depicts connectivity of volumes at the same pressure.  A, During 
regional pipette localization, positive pressure (800-1000 mBar) is connected to the 
pipette.  (This is the configuration realized when the valves are not powered.)  B, During 
neuron hunting, low positive pressure (25-30 mBar) is connected to the pipette.  C, 
During gigaseal formation, suction pressure (-15 to -20 mBar; dotted line) or atmospheric 
pressure (solid line) is applied.  During break-in, suction pressure is also applied. 

 

We assembled the autopatcher (Fig. 2.2.1) through modification of a standard in 

vivo patch clamping system.   The standard system comprised a 3-axis linear actuator 

(MC1000e, Siskiyou Inc) for holding the patch headstage, and a patch amplifier 

(Multiclamp 700B, Molecular Devices) that connects its patch headstage to a computer 

through a Digidata 1440A analog/digital interface board (Molecular Devices).  For 

programmable actuation of the pipette in the vertical direction, we mounted a 

programmable linear motor (PZC12, Newport) onto the 3-axis linear actuator. The 
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headstage was in turn mounted on the programmable linear motor through a custom 

mounting plate.  The programmable linear motor was controlled using a motor controller 

(PZC200, Newport Inc) that was connected to the computer through a serial COM port.  

An additional data acquisition (DAQ) board (USB6259, National Instruments Inc) was 

connected to the computer via a USB port, and to the patch amplifier through BNC 

cables, for control of patch pipette voltage commands, and acquisition of pipette current 

data, during the execution of the autopatcher algorithm.  During autopatcher operation, 

the USB 6259 board sent commands to the patch amplifier; after acquisition of cell-

attached or whole-cell-patched neurons, the patch amplifier would instead receive 

commands from the Digidata.  The patch amplifier streamed its data to the analog input 

ports of both the USB DAQ and the Digidata throughout and after autopatching.  For 

pneumatic control of pipette pressure, we used a set of three solenoid valves (2-input, 1-

output, LHDA0533215H-A, Lee Company). They were arranged, and operated, in the 

configuration shown in Fig. 2.12.1.  The autopatcher program was coded in, and run by, 

Labview 8.6 (National Instruments). The USB6259 DAQ sampled the patch amplifier at 

30 KHz and with unity gain applied, and then filtered the signal using a moving average 

smoothening filter (half width, 6 samples, with triangular envelope), and the amplitude of 

the current pulses was measured using the peak-to-peak measurement function of 

Labview.  During the entire procedure, a square wave of voltage was applied, 10 mV in 

amplitude, at 10 Hz, to the pipette via the USB6259 DAQ analog output.  Resistance 

values were then computed, by dividing applied voltage by the peak-to-peak current 

observed, for 5 consecutive voltage pulses, and then these 5 values were averaged.  Once 

the autopatch process was complete, neurons were recorded using Clampex software 
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(Molecular Devices).  Signals were acquired at standard rates (e.g., 30-50 KHz), and low-

pass filtered (Bessel filter, 10 KHz cutoff).  All data was analyzed using Clampfit 

software (Molecular Devices) and MATLAB (Mathworks). For detailed notes on the 

hardware installations and software operations, please refer to the Appendix A -

Autopatcher User Manual.   

 

2.12.4 Experimental Methods: Autopatcher Operation 

 

At the beginning of the experiment, we installed a pipette and filled it with pipette 

solution using a thin polyimide/fused silica needle (Microfil) attached to a syringe filter 

(0.2 µm) attached to a syringe (1 mL).  We removed excess ACSF to improve 

visualization of the brain surface in the pipette lowering stage, and then applied high 

positive pressure (800-1000 mBar), low positive pressure (25-30 mBar), and suction 

pressure (-15 to -20 mBar) at the designated ports (Fig. 2.2.1 and 2.12.1) and clamped 

the tubing to the input ports with butterfly clips; the initial state of high positive pressure 

was present at this time (with all valves electrically off).  We used the 3-axis linear 

actuator (Siskiyou) to manually position the pipette tip over the craniotomy using a 

control joystick with the aid of a stereomicroscope (Nikon).  The pipette was lowered 

until it just touched the brain surface (indicated by dimpling of surface) and retracted 

back by 20-30 micrometers. The autopatcher  software then denote this position, just 

above the brain surface, as z = 0 for the purposes of executing the algorithm (Fig. 2.3.1 

and 2.3.3), acquiring the baseline value R(0) of the pipette resistance at this time (the z-

axis is the vertical axis perpendicular to the earth’s surface, with greater values going 
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downwards). The pipette voltage offset was automatically nullified by the “pipette offset” 

function in the Multiclamp Commander (Molecular Devices). We ensured that electrode 

wire in the pipette was well chlorided so as to minimize pipette current drift which can 

affect the detection of the small resistance measurements that occur during autopatcher 

operation. The brain surface was then superfused with ACSF and the autopatcher 

program was started.  For detailed notes on the hardware installations and software 

operations, please refer to the Appendix A -Autopatcher User Manual.   

 

2.12.5 Experimental Methods: Histology and Imaging. 

 

At the end of the experiment, mice were euthanized while anesthetized via 

standard means (cervical dislocation or transcardial perfusion).  For experiments with 

biocytin filling of cells, mice were perfused through the left cardiac ventricle with ~40 

mL ice-cold 4% paraformaldehyde in phosphate buffered saline.  Perfused brains were 

then postfixed overnight in the same solution at 4oC.  The fixed brains were incubated in 

30% sucrose solution until cryoprotected.  The brains were flash frozen in isopentane and 

dry ice, and sectioned using a cryostat (Leica) at -20oC.  Slices were mounted in 

Vectashield with DAPI (Vector Labs), covered using a coverslip and sealed using nail 

polish.  Imaging was done with a confocal microscope (Zeiss) using 20x and 63x 

objective lenses, and maximum intensity projections taken using the confocal software.  

 

2.13. Conclusions 
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Whole-cell patch clamp electrophysiology enables high signal-to-noise cellular 

electrical recording, and also enables anatomical visualization of the morphology of cells, 

as well as extraction of cell contents for molecular analysis.  Here we report an algorithm, 

and a robot suited for performing the algorithm, for automatically patch clamping cells in 

the living brain with yields, speeds, and quality levels comparable to or exceeding what 

trained human investigators can perform.  The algorithm involves precision 

measurements, including measurements of sequences of pipette electrophysiological 

events, as well as precision movements, such as being able to halt pipette movements 

immediately following detection of such events.  The algorithm also involves temporally 

precise control of pressure, essential for enabling pipettes to descend to depth and for 

high-fidelity cell-attached and whole-cell recordings to be obtained.  The algorithm takes 

advantage of the power of simple robotic design principles, for example the ability to 

analyze temporal trajectories of quantitative data (in a fashion that is difficult for 

humans), and performing fast actuation events triggered by these analyses.  Importantly, 

the finding of the algorithm itself would have been difficult without a robotic platform for 

evaluating systematically the parameters governing the success of in vivo patch clamping.  

Thus, we anticipate that other applications of robotics to the automation of complex 

neuroscience experiments will be possible, and facilitated by the realization that a cycle 

of innovation in which the engineering and science iterate is useful in the discovering and 

creation of scientifically impactful technologies. 

 

Some aspects of in vivo patching had been standardized prior to this paper.  For 

example, pipette solutions must have osmolarity and pH defined within strict numerical 
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limits.  Most other aspects of patch clamping, however, have been regarded as human 

skills requiring dynamic evaluation of situations and adaptation to complex in vivo 

events.  Here we find that the decisions to be made, and the measurements and analyses 

leading to these decisions, can be codified in algorithmic form.  With a single set of 

thresholds of detection, protocols for achieving seals, and criteria for gauging the 

progress from one stage of the patch process to another, we were able to record cells in 

both the hippocampus and the cortex (despite the algorithm having been derived from 

cortical experiments alone), implying a degree of generality to the algorithm here 

described.  For cells that are vastly different from cells of the hippocampus and cortex, 

e.g. cerebellar granule cells whose small size requires high resistance pipettes26, or cells 

in non-brain structures (e.g., 75) or in other species such as Drosophila (e.g., 76), it is 

likely that the precise parameters utilized might need to be adjusted.  The iterative 

process utilized to derive the algorithm above, however, is in part automated by the 

existence of the robot – for example, the robot may be able to track yields and adaptively 

modify parameters if the recordings are failing at too high a rate.  The fact that the robot 

automates the process, reduces the cost of iteration, as well as the skill required to iterate 

– opening up methodology invention itself to a broader population. 

 

We chose to automate blind whole cell patch clamping because of its versatility, 

inexpensiveness, and power.  Using just the resistance of the pipette as the core measure 

governing decision making, we were able to hunt for cells and establish recordings, even 

deep within intact tissue.  Two-photon targeted patching24, 31 and other targeted methods25 

enable high quality recordings of fluorescently delimited cells, but have not been 
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automated, and are also expensive.  In vitro autopatching, in which a cell is sucked onto a 

microfabricated pore, or other equivalent protocols are performed, has been available for 

years51, 77-80 , but cannot be applied easily to intact tissue samples, such as living brain, 

due to the physical strategies employed by these earlier technologies.  Our robot may 

open up many new frontiers in biology, bioengineering, and medicine in which the 

assessment of the properties of single cells, embedded within intact tissue, is desired but 

has not been achievable in a systematic high-throughput fashion.  For example, analyzing 

how different cells in a neural circuit respond to a drug in specific brain states, 

performing electrical characterizations of cells in tissues removed during surgery, 

determining how different individual cells within a tumor biopsy sample vary in gene 

expression, and assessing how tissue-engineered organs vary in cell to cell composition, 

may provide fundamental new capabilities in diagnostics, personalized medicine, and 

drug development.  The ability to determine whether a recorded cell is of a given cell 

class, using optical activation of specific cells within that class as a way of indicating the 

identity of those cells81, would be aided by the ability to rapidly patch cells, thus enabling 

optogenetic74, 82-84 cell identification.  The autopatcher robot’s pipette can potentially be 

integrated with capillary systems for liquid chromatography and mass spectrometry for 

single cell proteomic analysis85, 86.  Automation both speeds up processes and reduces the 

skill levels required, enabling for example a single robot operator to control many rigs; 

these effects will greatly broaden the number of fields for which single-cell analyses in 

intact tissue are applicable. 
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Our device is based on a relatively inexpensive modification to a conventional 

patch rig, and thus can easily be incorporated into existing labs’ setups.  Such a rig is 

capable of enabling the recording of many dozens of cells per experiment in an 

automated fashion, but higher throughput devices and devices with new features would 

expand the power of this robotic approach even further.  For example, given that only a 

single linear drive is required, a head borne version for freely moving animals (e.g., 

building off the protocols described by Lee et al. 36) might be easily achieved.  Image-

guided versions may be developable, which use microscopy to identify targets, but then 

use the autopatcher algorithm to detect the cell membrane, obtain the seals, and achieve 

whole-cell access.  The ability to automatically make micropipettes in a high-throughput 

fashion87, and to install them automatically, might eliminate some of the few remaining 

steps requiring human intervention.   As a final example, the ability to actuate many 

pipettes within a single brain, and to perform massively recordings of neurons or other 

cells within a single living network, may open up the ability to analyze neural 

computations and other biological phenomena with great accuracy.  The algorithmic 

nature of the procedure we describe here, and the simple robotics needed to implement it, 

not only open up many kinds of scientific investigation, but also empower new kinds of 

neuroengineering to be contemplated and pursued. 
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CHAPTER 3 

 

INTEGRATION OF AUTOMATED PATCH CLAMPING ROBOT 

WITH OPTOGENETICS 

 

 

3.1. Introduction 

The cells in the brains exhibit a vast diversity of gene expression profiles, 

morphological properties and electrophysiological properties. Much of the current work 

in systems neuroscience is aimed at revealing how these different cell types of the brain 

work together in circuits to implement brain computations as well as how different cell 

types go awry in brain disorders. Establishing the causal roles specific cells types play on 

neural circuit dynamics requires tools that can monitor the electrophysiology of neurons 

at the single cell resolution while at the same time allowing the perturbation of activity of 

these specific neuronal cell types in a spatio-temporally precise manner. The recent 

developments on the field of optogenetics has allowed neuroscientists to study causal 

relationships between neural networks and behavior in a manner that previously was not 

possible. Optogenetic tools are able to activate and silence specific neuronal populations 

of the brain, in a temporally precise and rapidly reversible fashion via light activation. 

Specifically, the in vitro and in vivo expression of the light-responsive protein, 

channelrhodopsin-2 (ChR2)88, archaerhodopsin-3 (Arch)74, 89, and Halorhodopsin-57 



 59 

(unpublished) in genetically-targeted neurons enables them to be depolarized (ChR2) or 

hyperpolarized (Arch, Halo57) by pulses of blue and green and red light, respectively. 

Current techniques used to measure the activity of single cells in vivo during optogenetic 

stimulation are predominantly extracellular; and rely on spike timing and spike waveform 

characteristics of optically perturbed cells to determine their cell type. These are 

however, subjected to sampling biases and vary depending on brain state and region. 

Intracellular techniques such as whole cell patch clamping, on the other hand, enable 

single cell isolation as well as the measurement of sub-threshold membrane potential 

deflections in individual cells. This property can thus be used along with optogenetics to 

identify cell types being recorded from by directly measuring induced photocurrents or 

lack there of, due to light stimulation.  

 

Figure 3.1: (a) Schematic of a fiber coupled patch electrode mounted on a robot for 
automated whole cell patch clamping90. (b) Cartoon illustration of optogenetically driven 
cell type identification in vivo. While extracellular recording pick up multiple units, the 
ability to patch cell enables direct measurement of evoked photo-currents, presence or 
absence of which indicates the neuron type being recorded from. 

 

We demonstrate here the integration of optogenetic tools with the autopatcher: a 

robot for automated whole cell patch clamping of neurons in vivo90. We used this 
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integrated system to record from neurons expressing ChR2, Arch, as well as Halo-57. 

Using the autopatcher, is possible to distinguish between opsin expressing and non-

expressing cells simply by measuring the direct photocurrents that are induced by 

photostimulation in the former via whole cell recording. We report of performance of this 

integrated system in measures of yield and quality of recordings. We further demonstrate 

the utilization of the autopatcher as a high-throughput system for characterizing 

optogenetic molecules in vivo.  

 

3.2. Materials and Methods 

 

3.2.1 Cell type specific targeting of optogenetic molecule 

Neurons in the brain can be targeted with optogenetic molecules via several 

means. To illustrate the feasibility of targeting specific cell types we targeted Arch, a 

light-driven silencing opsin, to serotonergic neurons of the dorsal raphe nucleus (DRN) 

by injecting a Cre recombinase-dependent AAV vector (AAV-FLEXArch-GFP) into the 

dorsal-raphe nucleus (DRN) of knock-in mice that selectively express Cre in tryptophan 

hydroxylase (TPH; the rate-limiting enzyme for serotonin synthesis)-positive neurons. 

We examined the specificity and extent of Arch-GFP expression by analyzing the overlap 

of viral GFP expression with TPH immunofluorescence. The ChR2 experiments were 

conducted in transgenic mice that express ChR2 under the Thy1 factor (Thy1-ChR2)91. 

We also used the autopatcher to characterize in vivo, the performance of a Halo-57 that 

was virally delivered using AAV8-CAG-FLEX-Halo57-KGC-GFP-ER2 vector in 

CamKII-Cre transgenic mice.  
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3.2.2 Integration of optical stimulation hardware with Autopatcher 

 

The optic fiber is aligned parallel to the glass electrode of an Autopatcher and 

fixed by wrapping heat shrink tubing around the fiber and electrode and heating it for 2-3 

seconds (Fig. 1a). It allows the center of a 200 µm diameter optical fiber to be positioned 

~800 µm from the tip of glass electrode that is used for patching and deliver light powers 

up to 20 mW/mm2 at the recorded neuron for optogenetic stimulation. For patch 

clamping, the fiber coupled glass electrode is positioned 20-30 µm above the brain 

surface and automated whole cell patch clamping is carried out as described in Chapter 2 

90.  All surgical procedures are as described previously90, with the exception of the 

craniotomy preparation. For parallel insertion of the optic fiber along with the patch 

electrode, we opened up rectangular craniotomies with dimensions ~1mm x 2mm. The 

concept of cell type identification of recorded cells via optical stimulation is illustrated in 

Figure 3.1b.  

 

3.3. Results 

The integrated system shown in Figure. 3.1 can be used to reliably obtain whole 

cell recordings from anesthetized mouse during optical stimulation. Shown in Figure 

3.2a is a representative trace of a well-isolated single unit recording in cell-attached patch 

mode from an Arch expressing serotonin neuron in the DRN. Onset of green light 

stimulation (532nm wavelength) as indicated by the green bar resulted in photo-inhibition 

of spiking activity. We observed up to 87.09 ± 2.10% photoinhibition of firing rate 
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relative to baseline (n = 11 recordings, 3 mice). In contrast, light delivery to the DRN in 

non-transduced mice had no significant impact on spiking activity (2.00 ± 0.32 Hz firing 

rate at baseline versus 2.09 ± 0.27 Hz firing rate during light; P = 0.504, paired t-test; n = 

11 recordings, 3 mice; Fig. 2B), of the activity of putative DRN serotonergic neurons. 

Faster spiking GABAergic neurons within the DRN did not show any photoinhibition, 

enabling us to positively identify serotonin neurons via light stimulation. 

We have also successfully autopatched neurons expressing Halo-57 in the motor 

cortex (M2, depths 500-800 mm, n=4 neurons, 3 mice) and orbitofrontal cortex (OFC, 

depth 900-1200 mm, n=3 neurons, 2 mice), with a success rate of 32% (9 successful / 28 

attempts). This is comparable to the success rate we reported previously with the 

standalone autopatcher90. Figure 3.2c shows the current clamp recordings showing 

hyperpolarizing membrane potential hyperpolarization induced in neurons recorded from 

M1 when red light laser (635 nm wavelength) was switched on. We compared the 

hyperpolarization of membrane potential between neurons of M2 and OFC in Figure 

3.2d. This data indicates that the level of opsin expression can vary significantly from 

brain region to region, for the same gene delivery technique and further systematic 

studies will need to be done to characterize other existing optogenetic molecules and their 

efficacy in vivo. Finally, shown in Figure 3.2e is current clamp recording from a layer-5 

neuron in motor cortex (M1) of a Thy1-ChR2 transgenic mouse. At an estimated 20 

mW/mm2 light power at the recording neuron, it is possible to elicit single spikes from 10 

ms light pulses.  
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Figure 3.2: Simultaneous patch clamping recording and optogenetic stimulation in 
vivo: (a) (i) Representative waveform of an in vivo loose-cell attached recording from the 
dorsal raphe nucleus (DRN) of a SERT-Cre mouse. Due to the depth of the DRN, these 
recordings were obtained manually. (ii) scaled up view of a single action potential. (b) 
Bar plot of mean firing rate of the neurons before during and after light stimulation. The 
recordings revealed that 30 s 532-nm illumination potently reduced mean spiking 
frequency in Arch (+), but not Arch (-), SERT-Cre mice. (c) Raw trace of current clamp 
recording from a Halo-57 positive neuron showing hyperpolarizer potential during red 
light stimulation. Comparison between hyperpolarization in M2 and OFC neurons at 
same light stimulation power. (e) Raw voltage traces in current clamp showing spike 
evoked at 1 Hz using blue light pulses of 10 ms 

 

3.4. Conclusions  
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The integration of automated in vivo patch clamping robot with optogenetic 

stimulation hardware has resulted in a high-throughput tool for the characterization of 

optogenetic molecules in vivo. We have demonstrated that this integrated system can be 

used with the same efficiency as a standalone autopatcher, and can be used to 

characterize a variety of optogenetic molecules in vivo expressed both in transgenic 

animals as well those delivered via viral vector techniques. The ability to measure direct 

induced photocurrent due to light stimulation allows on-the-fly, unambiguous cell type 

identification of recorded neurons in vivo. This can be used to study the role of specific 

cells types in neuronal network dynamics, at a resolution that was previously not 

possible. Aside from high resolution electrophysiology capabilities that allow 

measurement of subthreshold membrane potential fluctuation events, whole cell patch 

clamping has the additional capabilities of allowing single cell morphological 

reconstruction via biocytin staining90 as well as the ability to isolate the mRNA of 

recorded cells for transcriptomic analysis14. When these capabilities are combined with 

optogenetics, it is possible to have a relatively complete characterization of the neurons; 

bridging the intrinsic properties of the neuron, its connectivity and the causal role its 

plays in local circuit dynamics.  
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CHAPTER 4 

MULTIPATCHER:  A ROBOT FOR AUTOMATED PATCH CLAMPING OF 

MULTIPLE NEURONS IN VIVO 

 

4.1 Introduction 

In Chapter 2 of this thesis, we described a method by which patch clamping in 

vivo was reduced to a computer algorithm that controlled the “autopatcher”, a robot 

capable of conducting blind in vivo patch clamping in an automated fashion90. We 

demonstrated the utility of the autopatcher in obtaining recordings in both the cortex and 

hippocampus of the anesthetized mouse brain, achieving high yields (~30% of overall 

attempts) and recording qualities were comparable to those of trained humans. The 

algorithmic nature of the procedure and the simple robotics needed to implement the 

autopatcher opened up the ability to actuate many pipettes within a single brain, and to 

perform parallel recordings of neurons or other cells within a single living network. 

Building off our discovery that blind in vivo whole-cell patching could be reduced to a 

reliable and stereotyped algorithm, we used the core hardware and software components 

of the single channel autopatcher and developed the “multipatcher”, a robot capable patch 

clamping sets of neurons simultaneously in vivo. As a demonstration, we built a 

multipatcher consisting of four independently controlled patch pipettes. This 
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multipatching robot was capable of achieving stable whole cell recordings from pairs and 

triplet of neurons, with a 59% success rate of whole cell recordings from one or more 

neurons, and a 30.7% success rate of recording from two or more neurons. The trials 

typically took just 2-3 minutes for each channel, and taking 10 - 11 minutes for a full 

trial. Simultaneous whole cell recordings could be carried from these neurons for up to 90 

minutes. The algorithms used for multipatching can be generalized to control arbitrarily 

large number of electrodes; additionally, the high yield, throughput and automation of 

complex set of tasks enables a practical solution for conducting patch clamp studies in 

potentially dozens of interconnected neurons in vivo for the first time. This will enable a 

more systematic assessment of how neurons work together to implement computations, 

and how they malfunction in diseased states.  

 

4.2 Multipatcher: a robot for parallel patch clamping of multiple neurons in vivo 

 

The multipatcher robot shares many of its core components with single channel 

autopatcher90 (Fig. 4.2.1). Each recording probe is a glass pipette with a fine tip, and 

filled with conductive saline solution. A silver chloride wire is inserted inside the pipette 

electrically connects the conductive solution to an amplifying headstage. Each headstage 

is mounted on a programmable linear motor, which is in turn held in place using a 3-axes 

linear manipulator. The assembly of the programmable linear motor, and the 3-axes linear 

manipulator make up the end actuator modules, four of which are arranged in a radial 
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pattern so as to be able to position an array of 4 pipettes, with their distal ends in close 

proximity to each other.   

 

Figure 4.2.1: Schematic of the robotic system used to perform the multipatching 
algorithm (Fig. 4.2.2 and Fig. 4.3.2).  The system consists of 4 end actuator modules 
each consisting of a 3 axes linear actuator and an additional programmable linear motor. 
Conventional in vivo patch setup compnents i.e., pipette, pipette holder, headstage, are 
mounted on the end actuator modules as shown. For simplicity, we have highlighted 
connections from only one such system to the patch amplifier, the motor controllers and 
the joystick. The same system can be in principle scaled up n-fold for a scaled up 
multipatcher hardware system. Each headstage is connected to a patch amplifier, which 
routes the signals to a computer via two computer interface boards. One board is 
dedicated for data acquisition, while a second one is used for executing the multipatching 
algorithm. A pressure switchboard with controllable bank of pneumatic valves, as well as 
analog pressure regulators is controlled using the secondary computer interface board. 
Actuation of motors is achieved using linear motor controller that is commanded by the 
computer, thus completing the closed loop control system.  

 

The headstages communicate electrically with amplifiers and a computer interface board 

that both records the neural signals and delivers neural control signals to the headstages.  

Finally, there is a pneumatic pressure control system consisting of a pressure regulation 

board and a pressure switching board that takes in pressurized air stored in a large 
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reservoir and converts that into different regulated pressure states such as high positive 

pressure, low positive pressure and suction. These regulated pressure states can be 

applied to the pipettes at different time points during the multipatching process.   

 

The process by which the multipatching robot establishes whole cell recordings in 

multiple neurons is illustrated in Fig 4.2.1. Before the robot is started, pipettes are 

installed in all the channels of the multipatcher, and the pressure set to high positive 

pressure state in all of them. The pipettes are then positioned in the craniotomy such that 

their tips enter and probe a brain area within a few hundred micrometers of each other 

(Fig 4.2.2 i). First, an initial assessment of the pipettes’ electrical resistance is carried out 

to ensure the pipettes are within an acceptable range for patch clamping- typically 

between 3-9 ΜΩ.  The robot then lowers all the pipettes in a serial fashion (Fig 4.2.2 i-iv) 

to the desired depths set by the experimenter. It is possible to localize different pipettes to 

different depths within the cortex, for e.g. both layer 2/3 and layer neurons. 
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Figure 4.2.2: Algorithm for multipatching: The different stages of the in vivo 
multipatching process which we optimized building upon the autopatcher algorithm (90, 
Chapter 2): i to iv execute the “regional pipette localization,” in which the pipettes is 
lowered to the respective target areas in the brain. At the end of the regional pipette 
localization stage, clogged pipettes are deactivated indicated by the faded pipettes in 
subsequent stages (iv to ix). In steps v to viii the robot enters the “neuron hunting and 
gigasealing mode” in which the pipettes are advanced in small increments, until each 
detects a neuron via signature changes in pipette resistance; at which time, the pipettes 
stop moving and “gigaseal formation”  (vii) is attempted. This process is repeated until a 
gigasealing formation attempt is made in all the active channels, after which “break-in” is 
used to synchronously break into all gigasealed neurons to get to whole cell configuration 
(ix).   

 

Once all the pipettes have been lowered, they are checked for tip fouling or 

blockage. If pipettes have clogged or fouled tips, the corresponding channels are 

deactivated, and play no further part in the multipatching process (Fig 4.2.2 iv). The 

robot then moves all the pipettes in active channels in small incremental steps (2-3 µm), 

after which it sends a series of predefined square wave voltage pulses (e.g. 10 mV at 10 

Hz, with offset voltage set at 0 mV) to the different pipettes, and measures the resultant 

current traces. This is used to compute the resistance values of the pipettes. This two-step 

process is repeated while looking for signature trends in resistance traces in one or more 

channels that indicate suitable contact with a neuron for patch clamping (Fig. 4.2.2 v and 

vi; analogous to the “neuron hunting” stage in the autopatcher operation, Section 2.2). 

After detecting this signature, the robot halts the movement of pipettes in all channels, 

and attempts to establish a gigaseal in the channel(s) that have encountered a neuron (the 

“gigasealing” stage in the autopatcher, (Fig.4.2.2 vii). After a gigasealing attempt has 

been carried out in a particular channel, its motor is deactivated, and the rest of the 

pipettes resume neuron hunting. This process is repeated until all the pipettes have 
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encountered neurons and attempted gigasealing (Fig. 4.2.2 vi-viii). At this point, the 

channels that have successfully formed gigaseals are selected and the robot applied pulses 

of suction until it successfully breaks into the gigasealed cells (the “synchronized break-

in” stage, Fig 4.2.2 ix).  

The ability of the robot to perform these stereotypical tasks in an automated and 

parallel fashion results in a degree of scalability that human operators find hard to 

perform manually. Simultaneous, parallel execution of multiple time-point tasks such as 

lowering multiple pipettes in small increments; monitoring of resistance values in 

multiple channels and identification of signature neuron contact trends become 

increasingly complex tasks for human experimenters and thus become unmanageable to 

perform manually when the number of pipettes is scaled beyond even 2-3 channels. 

Further, automation enables a fine control of the time scales over which different tasks 

and decisions are executed. For example, it is possible to synchronize events such as 

breaking in to multiple neurons so that the all the gigasealed neurons can obtain whole 

cell state at the same time, thus enabling the experimenter to maximize the time duration 

of simultaneously whole cell recordings, and normalizing that effects of cell dialysis 

which occurs starting from the moment intracellular access is obtained. 

In the next section, we will describe in detail, the construction of the robot. But 

first we summarize the performance of the multipatching robot. We validated the 

performance of a 4-channel multipatching robot in the cortex of anesthetized mice. The 

multipatcher, running the algorithm shown in Fig. 4.2.2, obtained successful whole cell 

recordings in 1 or more channels 58.9% of the time (n = 23 out of 39 trials, n=7 mice). 
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We defined success as being able to hold a cell in current clamp mode with under 500 pA 

of injected current for at least 5 minutes.   

  Out of these 23 trials, the multipatcher successfully recorded from pairs of 

neurons in 11 trials and from a triplet of neurons in one trial. Thus overall, the 

multipatcher was able to establish successful whole cell recordings from multiple neurons 

30.76% of the time (12 out of 39 attempts). The ability to record from pairs and triplets of 

cells simultaneously demonstrate the scalability of the multipatching robot algorithm; by 

increasing the number of controllable pipettes, even higher numbers of simultaneous 

whole cell recordings can be obtained. In these trials, overall, 17.9% of the pipettes got 

blocked (n= 28 of 156 pipettes in n=39 trials), a percentage that is comparable to those 

obtained when using the single channel autopatcher90. The entire multipatcher trial from 

start of regional pipette localization to end of break-in took on an average 10.45 + 2.56 

minutes. Thus, per channel, the multipatcher requires 2.61 + 0.64 minutes, again, 

comparable to the time taken by the single channel autopatcher to establish whole cell 

recordings.  

 

4.3 Multipatcher robot construction 

 

We assembled the multipatcher hardware by using the basic template of the 

autopatcher robot described in Chapter 2 (See Section 2.10.3) and replicating the end 

actuators four fold. Modifications were made to the pneumatic systems such that a central 
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pressure control system could be used for independent pressure modulation in all four 

channels. These are described in detail below. 

 

4.3.1 Actuator system 

The pipette actuator modules were of the same configuration as the single channel 

system. Briefly, each module comprised a 3-axis linear actuator (MPC285, Sutter 

Instruments Inc) for holding the patch headstage (Fig. 4.3.1). For programmable 

actuation of the pipette in the tilt axis, we mounted a programmable linear motor (PZC12, 

Newport) onto the 3-axis linear actuator. The tilt axis actuator was mounted at an angle of 

45 degrees to the vertical. The headstage was in turn mounted on the programmable 

linear motor through a custom mounting plate. Four such actuator modules were placed 

in close proximity to each other in a radial fashion as shown in Fig 4.3.1 b and Fig. 4.2.1. 

In this configuration, it was possible to position four patch pipette tips in an array of 1mm 

x 1mm on top of the brain surface (Fig 4.2.1 c and Fig 4.2). It is desirable to get the 

pipette tips as close to each other as possible, so as to target neurons within the same 

microcircuit (<200 µm).   

 



 73 

 

Figure 4.3.1: Photograph of the multipatcher robot’s end actuator modules, showing 
(a) 4 actuator modules forming an asymmetric array for actuating pipettes. The 
anesthetized mouse if head fixed using the custom holder, and pipettes are positioned 
using the stereomicroscope for visualization. (b) Photomicrograph of a set of 4 pipettes 
tips positioned within a 1mm square area for targeting the same brain region in the 
cortex. Scale bar indicates 1.5 mm.  

 

With an angled approach, if the pipettes were lowered into the brain to depths > 

700 µm, the pipettes could be positioned within a millimeter of each other with this 

current system. Positioning them closer, can sometimes result in pipettes colliding with 

each other during a trial, and was thus not attempted.  The programmable linear motors in 

each of the four channels were connected to a multiplexing switchboard (PZC-SB, 

(a)

Programmable

linear motor

3 axis linear
actuator

Custom Holder

for head fixing mouse

(b)



 74 

Newport; Fig. 4.2.1 and Fig 4.3.1). All motors were controlled via a single motor 

controller (PZC200, Newport Inc). The PZC200 motor controller was in turn connected 

to the computer through a serial COM port.  This architecture allowed up to 8 channels to 

be selected and controlled by the switch box using a single serial port in the computer.  

 

4.3.2 Signal Interfacing with computer 

 

Signals from the headstages were sent to two 2-channel patch amplifiers 

(Multiclamp 700B, Molecular Devices) that connected patch headstages to a computer 

through a Digidata 1440A analog/digital interface board (Molecular Devices) (Fig. 

4.2.1). In a similar fashion to the autopatcher, we used an additional data acquisition 

(DAQ) board (cDAQ-9174 chassis with modules NI 9215 for analog inputs and NI 9264 

for analog outputs, National Instruments Inc) was connected to the computer via a USB 

port, and to the patch amplifier through BNC cables, for control of patch pipette voltage 

commands, and acquisition of pipette current data, during the execution of the 

multipatcher algorithm. During autopatcher operation, the cDAQ-9174 board sent 

commands to the patch amplifier; after acquisition of cell-attached or whole-cell-patched 

neurons, the patch amplifier would instead receive commands from the Digidata.  We 

used a software-controlled co-axial BNC relays (CX230, Tohtsu) for driving signal 

switching between the cDAQ-9174 and the Digidata. The patch amplifier signals were 

split and streamed simultaneously to the analog input ports of both the cDAQ-9174 and 

the Digidata throughout and after autopatching. The multipatcher program was coded in, 
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and run Labview 2011 (National Instruments). The cDAQ-9174 sampled each channel of 

patch amplifiers at 15 KHz and without any applied scaling factor, and then filtered the 

signal using a moving average smoothening filter (half width, 6 samples, with triangular 

envelope), and the amplitude of the current pulses was measured using the peak-to-peak 

measurement function of Labview. During gigasealing operations, where currents of the 

orders of 5-10 pA were measured, an additional exponential filter (decay rate = 0.001 

seconds) was used to filter out any stray pipette capacitance traces. For resistance 

measurements, the amplifiers were set in voltage clamp mode using the Multiclamp 

commander software (Molecular Devices). Square wave of voltage traces were applied: 

10 mV in amplitude, at 10 Hz, to the pipettes via the cDAQ-9174 analog outputs.  

Resistance values were then computed, by dividing applied voltage by the peak-to-peak 

current observed, for 5 consecutive voltage pulses, and then these 5 values were 

averaged. During gigasealing and break-in stages of the robot operation, offsets ranging 

from 0 to -70 mV were applied to the 10 mV, 10 Hz square waveforms to apply the 

requisite holding potentials needed by the multipatcher algorithm. Multipatched neurons 

were recorded using Clampex software (Molecular Devices).  Signals were acquired at 

standard rates (e.g., 30-50 KHz), and low-pass filtered (Bessel filter, 10 KHz cutoff).   

All data was analyzed using Clampfit software (Molecular Devices) and MATLAB 

(Mathworks). 

 

4.3.3 Pneumatic system 
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The pneumatic system consisted of two boards: an analog pressure regulator 

board and a pressure switching board. The pressure regulator board is shown in Fig 4.3.2. 

It consists of three manual pressure down-regulators (Mcmaster Carr) connected to a 

common wall pressure source outputting a pressure of ~5500 mBar. The wall pressure 

was down regulated to three levels 1 Bar, 100 mBar and ~500 mBar. The 1 Bar regulated 

pressure was connected to an electronic pressure regulator (990-005101-015, Parker) for 

setting to high positive pressure state (i.e. 800-1000 mBar). The 100 mBar regulated 

pressure was similarly connected a second pressure regulator (990-005101-002, Parker) 

for setting the low positive pressure state (15-20 mBar). The ~500 mBar regulated 

pressure was connected to venturi vacuum generator (AVR038H, Air-Vac) which 

generated a vacuum pressure of 300 mBar that was connected to an electronically 

controlled vacuum pressure regulator (990-005203-005, Parker).  

 

 

Figure 4.3.2: Schematic of the pneumatic: (a) Shows the regulation of pressure to 
different pipettes using a common pressure source. The wall pressure source is down 
regulated, or converted to a vacuum pressure and routed to the designated input ports of 
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the valve switching board. Each valve switching board consists of multiple valve banks 
(b) that can be controlled using the secondary digitizer (See Fig. 4.2.1) to set a desired 
pressure state in a pipette. In this particular example, the valves are set such that the high 
positive pressure is output to the pipette. 

 

The pressure outputs of the three electronic pressure regulators’ were controlled 

using analog voltages (0-5 V) set manually using potentiometers at 800 mBar (high 

positive pressure), 20-25 mBar (low positive pressure state) and -15 to -25 mBar (suction 

state). For breaking in, the suction pressure was set to vacuum pressures between -150 

mBar to -250 mBar. The pressures outputs where measured using digital manometers 

(4756-FM, Dwyer) and connected to the input manifolds of the pressure switchboard.  

The pressure switchboard consisted of 4 sets of valve banks, with each valve 

bank, consisting of 3 solenoid valves (2-input, 1-output, LHDA0533215H-A, Lee 

Company) as shown in Fig. 4.3.2 b. The input ports in each of the three valves making up 

the valve bank can be closed or opened using a TTL command from the secondary 

interface board. 

 

4.4 Derivation of an algorithm for multipatching 

 

The algorithms for multipatching in vivo were formulated using the autopatcher 

algorithm as a basic template and modifying it for parallel control of multiple pipettes. 

Here, we describe the iterative process utilized for developing these algorithms. The 

primary objective of any algorithm used for parallel patch clamping in vivo is to establish 
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whole cell recordings from as many neurons as possible, ideally ensuring arbitrary 

scalability in a short time period. It was immediately apparent to us that the simplest 

implementation of a parallel patch clamping system was to introduce n number of fully 

independent autopatcher units simultaneously into the brain, with the physical constraint 

being the placement of the pipettes in the desired positions in the brain. Such an 

independently deployed system would ensure that n number of channels conduct 

autopatching trials in the same average time as it would take for a single channel 

autopatcher (5 + 1 minute90). However, this strategy encountered two issues. Firstly, the 

movement of motors during neuron hunting resulted in electrical noise, and when 

coincident with the resistance measurements in other channels, thus resulting in errors. 

Thus, the resistance measurement events in all channels needed to be synchronized 

during the entire process of neuron hunting. Secondly, this approach did not take into 

consideration brain tissue displacement caused by the motion of multiple pipettes in 

brain. For establishing stable gigaseals, it is critical to prevent any relative motion 

between the pipette tip and the cell during the gigasealing process60, 92. Since 

encountering a neuron during blind in vivo patch clamping is a random process, in a 

system with multiple autopatchers running independently, different pipettes encounter 

neurons at different time points. Movement of pipettes seeking neurons during neuron 

hunting cause tissue displacement, which would hinder the proper establishment of 

gigaseals in pipettes that had already encountered neurons. Large displacements could 

also dislodge neurons that were fully gigasealed onto pipettes. Thus we pursued strategies 

to minimize the amount of tissue displacement during the neuron hunting and gigasealing 

stages of the algorithm execution.   
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One of the steps taken to mitigate the tissue displacement issue was to perform the 

regional pipette localization step for all the electrodes in one single step. Thus, each 

pipette can be lowered to the desired depth, and then neuron hunting in all channels can 

start simultaneously. This is shown in the “regional pipette localization” section of the 

multipatcher algorithm flowchart (Fig. 4.4.1 i-iv). Once the pipettes have been installed 

and positioned in the craniotomies, the multipatcher program is started. At this point the 

depths for all the pipettes Z0i (i=1,2,3 and 4) are denoted as zero by the program. Then 

the baseline pipette resistances RZ0i in the ACSF or saline bath are recorded (Fig. 4.4.1 i). 

The pipettes are then lowered to the desired depths at a speed of ~200 mm/s90 (Fig. 4.4.1 

ii-iv). Pipettes in different channels can be lowered to different desired depths, thereby 

allowing simultaneous recordings from different layers of the cortex, or even different 

regions of the brain. Once lowered to depth, the pressures in the pipettes are decreased to 

low positive pressure state (~20-25 mBar) and the pipette resistances RZUi assessed for a 

second time. The values of RZUi and RZ0i are compared and if resistance increases greater 

than 0.35 MΩ  are detected in any of the channels, the pipette tips are deemed blocked or 

fouled and those channels are deactivated as denoted by the low opacity pipette in Fig. 

4.2.2 iv. These channels play no further part in the multipatcher trial. If all pipettes are 

found to be inadequate for patching, the program stops, and a new trial has to be started. 

We found that pipettes got fouled at a rate of 18.2% (n=28 out of 156 pipettes in 39 

trials), which is comparable to the rate of pipette blockage in the autopatcher. By 

lowering all the pipettes into the regions of interest in a single step, large macroscopic 

displacements of pipettes (and the corresponding tissue displacement) are eliminated. 
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This completes the “regional pipette localization” stage of the multipatcher algorithm. 

The multipatcher now has to seek out neurons to gigaseal and break in establish whole 

cell recordings. We proceeded to explore three different algorithms shown in Fig. 4.4.1.  

 

Figure. 4.4.1: Multipatcher algorithm iterations: We explored different means to 
achieve the end whole cell state in all pipettes in as synchronized a manner as possible. 
Algorithms (a) and (b) where all cells reached gigasealed state synchronously while (c) 
where only the break-in stage was synchronized. In all cases, pipettes faded out represent 
those that were deactivated at the end of the regional pipette localization stage and play 
no part in these algorithms. In (a) each pipette stops when neurons are encountered, in (b) 
the pipettes are retracted back by a fixed distance after contact, and in (c) pipettes attempt 
gigasealing immediately upon encountering neurons. 
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Two factors needed to be taken into consideration while formulating algorithms 

for the subsequent stages of patch clamping. Firstly, it is advantageous to perform all the 

steps of neuron hunting, gigasealing and break-in in a parallel manner, so as to reduce the 

time duration of the experiment. Secondly, as we scale up the number of channels, the 

supporting hardware required for independent pressure control scales up proportionally. 

Each channel of the multipatcher requires three solenoid valves and three corresponding 

TTL control channels. Thus for n number of channels, this number would be 3n. When 

we are dealing with large number of channels (>50), it become impractical to have 

independent control over the pressures for each individual channel. One way to simplify 

this requirement is to synchronize the gigasealing events of all the channels. In this way, 

the pressures of all the systems can be switched between different states at the same time, 

i.e. from low positive to atmospheric pressure, followed by suction application using just 

one set of solenoid switch valves.  

Hence, we first implemented a simple extension of the autopatcher algorithm 

shown in Fig 4.4.1 a.  The active pipettes were first actuated in steps of 2 µm, followed 

by an assessment of their pipette resistances. This process was repeated iteratively, until 

one or more pipettes encountered a neuron (Fig 4.4.1a i and ii) as detected by the 

criterion used by the autopatcher, i.e. monotonic increase in pipette resistance greater 

than 250 kΩ over two consecutive actuation steps. Once a neuron was detected, the 

corresponding motor was simply deactivated and the rest of the pipettes continue the 

process of neuron hunting, until all pipettes encountered neurons and stopped (Fig 4.4.1a 

iii and iv). At this time, the pressure in all the pipettes was simultaneously released and 

gigasealing was attempted in a manner identical to the autopacher. This algorithm is 
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identical to that employed by the autopatcher, but for the different times waited before 

release of positive pressure for gigasealing in different channels. In 19 trials (in n= 3 

mice) where three or more active pipettes performed the neuron hunting and gigasealing 

tasks, the multipatcher established successful gigaseals 22% of the time (15 out of a total 

of 68 attempts in 19 trials; 8 out of 76 pipettes were deactivated at the end of regional 

pipette localization stage due to tip blockage). The pipettes reaching neurons last, and 

thereby immediately going into gigasealing successfully formed gigaseals 36.8% of the 

time (7 out of 19 attempts). In the rest of attempts, successful gigaseals were formed 

16.3% of the time (8 out of a possible 49 attempts). This number is significantly lower 

that what was previously using the autopatcher90. We analyzed the resistance traces in 

this second set and found that in some of the traces, the resistance values decreased to the 

baseline readings obtained before contact with a neuron, during the course of waiting for 

pipettes in other channels (20% of the time, 10 out of 49 trials). This indicates that the 

tissue displacements caused by motion of other pipettes in the brain was large enough to 

dislodge neurons from the optimum relative positions with respect to the neurons for 

gigasealing. Further, only 20.5% (8 out of the remaining 39) of the pipettes established 

successful gigaseals, even when elevated resistance readings (indicating contact with a 

neuron) were observed. We hypothesized that the constant exposure of the neurons to the 

intracellular pipette solution ejected out of the pipette, when waiting for the rest of the 

channels to find neurons, possibly had a deleterious effect on the neurons and resulted in 

lower rates of gigasealing.  

To mitigate this effect, we implemented a second algorithm shown in Figure 

4.4.1b. In this procedure the multipatcher proceeded along the same lines as the previous 
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algorithm, until a neuron was encountered at one of the channels, at which time, the 

pipette was retracted by 30 µm, and stopped (Fig 4.4.1b ii). We chose a value of 30 µm 

because, that was the minimum distance the pipettes needed to be retracted before the 

resistance measurement decreased to the average baseline value (n=15 trials). This would 

position the tip at a distance where the ejection of the intracellular solution has no effect. 

This process was repeated for all the active pipettes, such that at the end of neuron 

hunting, the relative positions of all the pipettes, and the corresponding neurons they 

encountered were the same (~30 µm, after accounting for tissues displacement) (Fig 

4.4.1b iii). As a final neuron-hunting step, all pipettes were moved forward by the same 

distance (30 µm), and gigasealing attempted synchronously (Fig 4.4.1b iii-v). This 

algorithm yielded a success rate for gigasealing of ~20% (12 out of 59 attempts in 17 

trials, with 9 pipettes deactivated at the end of regional pipette localization stage due to 

tip blockage). Again, this was much less than what we would expect when using the 

autopatcher algorithm. We analyzed the resistance measurement traces for this algorithm, 

along similar lines to the previous algorithm described above and found that after the 

final neuron hunting step when all pipettes advanced forward by 30 µm, resistances went 

back to the elevated values indicated by contact with neurons in only 45.7% (27/59 

attempts), again indicating that tissues displacement effects were in play.  

As a third iteration, we implemented the algorithm shown in Figure 4.4.1c. As it 

has been observed previously, once gigasealed cell attached or whole cell stage has been 

achieved, the configuration is remarkably stable against motion artifacts. This has been 

used previously to record in the whole cell state from head fixed rodents36, 37, 60, 61, 66, 

freely moving animals35, 36, 93. Several groups have also shown that it is possible to carry 
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out loose cell attached recordings for tens of minutes to hours94. Further, from whole cell 

stage, pipettes can be retracted for up to 50-60 µm before an outside out patch is 

established95. Using this property, a third algorithm was explored where in, once a pipette 

encountered a neuron, the program pauses neuron hunting in all channels and attempts 

gigasealing in the channel that has encountered a neuron. 

This is shown in Fig 4.4.1c. once the robot enters the neuron hunting and 

gigasealing stage (Fig 4.4.1c v-viii), it lowers pipettes in the active channels forward by 2 

µm in a serial fashion. This is followed by assessment of the resistances of pipettes. 

These two tasks are performed repetitively, while constantly looking for time-series 

trends in resistance measurements that are indicative of contact with a neuron. These 

trends are typically monotonic increases in pipette resistance over 0.2- 0.25 MΩ within 

three measurements (See Section 2.4 in Chapter 2). Whenever a channel positively 

encounters a neuron, pipette actuation in all channels is stopped and gigasealing protocol 

is initiated.  
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Figure 4.4.2: The complete algorithm for automated in vivo multipatching: The 
dotted lines frame separate each of the stages of the algorithm; within the dotted line 
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frames, symbols representing tasks, measurements, and choice points are indicated, along 
with text explaining the individual steps and consequences of decisions (see “KEY” for 
definition of symbols).  Abbreviations: ACSF, artificial cerebrospinal fluid; RZ0i, 
resistance of pipette i at depth Z in the brain; ZUi , upper depth limit of the region 
targeted by the regional pipette localization stage of each pipette i; R(ZiNeuron), pipette 
resistance at the depth at which the neuron is being recorded (which will vary over time, 
as the later stages of the process, gigasealing and breaking-in, occur); Rt, pipette 
resistance threshold for neuron detection. The blocks shown in grey are manual tasks that 
are carried out by the experimenter, and the blocks in white are those executed by the 
computer. 

 

The multipatcher waits 10 seconds to see if the pipette resistance decays back to 

baseline value. If it does, the program restarts neuron hunting. Otherwise, the program 

releases positive pressure in the pipette, waits 5 seconds, and applies suction pressure for 

10 seconds. Once the suction pressure is released, the holding potential is stepped down 

to -30mV, and ramped down from that value to -70mV over the next 30 seconds. This 

completes the “gigasealing” attempt for that pipette (Fig 4.4.1c iii). Once the gigasealing 

protocol is completed in a particular channel, the neuron is held at a holding potential of -

70 mV, the motor is deactivated and neuron hunting is re-started in the remaining active 

channels. This process is repeated until all the active channels have encountered neurons 

and undergone gigasealing (Fig 4.4.1c iv).  

 

 

 

Table 4.1: Pressure and time setting for iterative achieving successful break in, causing 
as minimal perturbation to the cell. 
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At this point of time, the multipatcher attempts break in (Fig 4.4.1c v). The user 

can choose the channels in which break-in needs to be executed. We used an iterative 

method where in the duration of the suction pulses, and the applied pressures were 

incremented in each successive attempt, until a successful break-in was formed (Table 

4.1). Using this algorithm, we were able to get successful gigasealed cell attached 

recordings from 35.93% of the active pipettes (46 out of 128 pipettes in 39 trials, 28 

pipettes were deactivated at the end of the regional pipette localization stage). This was 

the highest yield we obtained from all three iterations and was thus used as the final 

generalized algorithm as shown in flow-chart form in Figure 4.4.2. Of the 46 neurons 

that were gigasealed, we established successful whole cell recordings in 36 neurons, 

achieving a break-in success rate of 78.2%. Finally, we were able to establish successful 

whole cell recordings from multiple neurons, i.e. 2 or 3; we were not able to achieve 

whole cell recordings in all 4 pipettes in any of the trials; in 30.7% (12 out of the 39 

trials, with 11 recordings where pairs of neurons were connected, and 1 recording where 

a triplet of neurons were recorded) of the trials. While the algorithms were formulated 
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and tested using a 4-channel multipatcher system, they can in principle be applied to 

control arrays of arbitrarily large number of pipettes. More pipettes would ensure, higher 

success rate of obtaining multiple patch recordings.  

 

4.5 Time course of Multipatcher operation 

 

A representative trace of resistance readings recorded from the fours channels of 

the multipatcher during a full trial is shown in Fig.4.5. The resistance traces for channels 

1,2,3 and 4 are shown in red, blue green and magenta respectively. The key events during 

the trial are denoted by Roman numerals. The detection of a neuron by channel 3 is 

shown by roman numeral i. Between i and ii, all pipettes paused neuron hunting and 

gigasealing was attempted in channel 3. The stereotypical gigasealing tasks were carried 

out in a similar fashion described in Section 4.4, At ii, set at -70 mV. The entire 

gigasealing process was programmed to execute in 60 seconds. At the end of 60 seconds, 

channel 3’s motor was deactivated and the holding potential held at -70 mV as the rest of 

the channels resumed neuron hunting. At iii the robot detected contact with a neuron in 

channel 2. The same gigasealing steps described above for channel 3 were used for 

channel 1 between time-points iii and iv, resulting in an unsuccessful gigaseal formation. 

It must be noted here that gigasealing was attempted only for 35 seconds, as against the 

full 60 seconds routine. As it was clear that the cell would not gigaseal and the 

experimenter terminated the gigasealing attempt using a manual intervention mechanism 

in the software interface. At iv channel 2’s motor was deactivated at the end of which the 
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holding potential was held at -70 mV, while channels 1 and 4 resumed neuron hunting. 

Between v and vi, the robot paused again, to successfully attempt a gigaseal formation in 

channel 1. Finally the same sequence of events applied to channel 4, and a successful 

gigaseal resulted between vii and viii. At ix, the gigasealed neurons attached to the patch 

electrodes in channels 1, 3 and 4 are broken into to establish whole cell patch recordings.  

Figure. 4.5: Representative traces of pipette resistances recorded by the multipatcher 
during a successful multipatcher trial, during the neuron hunting and gigasealing stages. 
The traces from channels 1-4 are shown in red, blue green and magenta respectively.  
Key events are flagged by romal numerals, with time courses during gigasealing shaded 
in grey. At i channel 3 detects a neuron, and all pipettes stop advancing, and gigasealing 
is attempted between i and ii. At ii, motor in channel 3 is deactivated, and the pipette is 
held at -70mV holding, while the rest of the channels continue neuron hunting. This 
process is repeated every time a pipette encounters a neuron, and gigasealing is attempted 
between iii and iv; v and vi; and, vii and viii. ix is the point at which all channel that have 
successfully gigasealed are broken into, to get whole cell configuration.  
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An important distinction from the autopatcher algorithm is to be noted here. The 

time for execution of gigasealing tasks was fixed at 60 seconds, whereas in the 

autopatcher, break-in was initiated at the discretion of the experimenters. Thus, average 

gigasealing time reported for the autopatcher in chapter 2 is higher than 60 seconds. The 

gigasealing times recorded for autopatching90 are the times taken for gigaseals to fully 

stabilize and asymptote, upon which break-in was initiated by the experimenter. In the 

multipatcher algorithm, we employed a fixed time for gigasealing with the cell being 

clamped at -70 mV holding potential at the end of the 60-second gigasealing routine. 

Thus, even as the program resumed neuron hunting with pipettes that were yet to 

encounter neurons, the gigasealed cell’s(s’) seal resistance continued to increase and 

finally asymptote due to the hyperpolarizing holding potential that was applied. This did 

not however apply to the channel that attempted gigasealing last for which the usual 

conditions used for autopatching were applied.  

In a subset of the trials, we measured the time taken to fill, install and position the 

pipettes in a multipatching trial. For four channels, the average time taken for filling and 

installing pipettes was 12.48 + 1.36 minutes (n=18 trials), and the time taken for the 

completion of multipatcher trials culminating in successful whole cell recordings 

recordings of one of more neurons was 10.45 + 2.56 minutes (n=14 trials). Thus, for a 

single channel it takes 3.2 + 0.31 minutes for pipette installation, and 2.61 + 0.64 minutes 

for whole cell patch clamping as compared to the autopatcher (2.0 ± 0.4 for pipette 

installation and 5 ± 2 minutes for operation). The increased time for pipette installation 

per channel is due to the increased complexity of tasks involved in positioning the 

pipettes in close confinement. However, this is offset somewhat by the reduced time for 
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operation/channel mainly due to limiting the gigasealing operations of all but one channel 

to 60 seconds.  

If the current system were to be scaled up for controlling higher numbers of 

pipettes, it is expected that installation and robot operation times would scale up 

proportionally, with the time for installation increasing more rapidly. Thus scaling up 

beyond 10-12 channels would necessitate a redesign of the actuation modules to enable 

quick replacement of pipettes for high-throughput operation.  

 

4.6. Quality of patch recordings 

 

Representative traces recorded from a triplet of neurons in current clamp mode 

are shown in Fig. 4.6.1 a. As observed previously with the autopatcher, a majority of the 

neurons exhibited up and down states, typical of cortical neurons under anesthesia. The 

up and down states in all neurons were highly correlated, as can be seen in Fig. 4.6.1 b. 

We injected currents in one or more neurons (Fig. 4.6.2), to evoke synaptic responses. 

We however did not see evoked synaptic currents in any of the paired recordings, 

possibly because we were still not within the range of distances where one would expect 

a high probability of synaptically connected neurons. 
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Figure 4.6.1: Whole cell current clamp recordings: Representative baseline spiking 
activity in current clamp mode, in three neurons that were simultaneously whole cell 
recorded using the multipatcher These recordings corresponds to the to the trial shown in 
Fig 4.5. (a) The three neurons were targeted in the motor cortex, ~ 700 micrometers from 
each other. Mean resting potentials for the neurons were -55.93 + 7.21 mV (top),  -60.3 + 
4.52 mV (center) and -69.23 + 4.58 mV (bottom) and (b) Zoomed in view of sub-
threshold membrane potential fluctuations, during the time highlighted by the dashed box 
in a. Neurons recorded displayed a high degree of correlation in the up and down state 
fluctuations. Spikes in this time period have been truncated for better visualization.  

 

We were able to record stably from multipatched cells for 56 + 8 minutes (n=23 

neurons), with recordings lasting for a maximum of 90 minutes. In the interest of 

throughput, we prematurely terminated the recordings in 5 trials (3 paired recordings, 2 

single neuron recordings), before the whole cell recordings were lost, thus, the actual 

average recording time could have been higher. 

Analyzing just the trials where multiple whole cell recordings were obtained, the 

mean and standard deviation of the access resistances obtained were 44.2 + 17.6 MΩ (n= 

23 neurons), the mean and standard deviation of the resting membrane potentials were -
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62.2 + 9.8 mV (n= 23 neurons), and the mean and standard deviation of the currents 

needed to hold the neurons at -65 mV in voltage clamp mode was  -78.5 + 55.2 pA (n= 

23 neurons). All these values are comparable those obtained previously by us using the 

single channel autopatcher90, suggesting that holding cells for prolonged periods of time 

(> 2-3 minutes) did not affect the quality of the whole cell recordings.( see Section 2.5 ).  

 

 

Figure 4.6.2: Investigating synaptic connectivity between whole cell patched 
neurons: Currents were injected in the neurons recorded in Fig 4.6.1 to determine if they 
evoke synaptic currents in other neurons. (a) 80 pA of somatic current injection in the 
neuron shown in the top trace elicited no response in the other two cells despite spiking. 
(b) 120 pA current in the neuron recording shown in the middle trace, and (c) 60 pA 
current injection into the neuron recording shown in the bottom trace, again no synaptic 
response was evoked. This observation was consistent with other paired recordings. 
Black lines indicate time duration of injected currents, spikes if any in neurons that did 
not have any current injection were truncated, for better visualization of the sub-threshold 
current dynamics. 

 

We grouped the whole cell patched neurons into those that were gigasealed 

immediately upon detection, and those that were held in gigasealed states for longer 
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periods of time during neuron hunting in other channels. Between these two groups, we 

compared the access resistances, and the resting membrane potentials; indicators of 

quality of the recording obtained. All parameters reported here are in the uncompensated 

form (i.e. no series resistance or capacitance compensation), obtained using the 

conventional patch clamp software after autopatcher program completion. Previous 

literature has suggested that holding neurons for prolonged periods of time in gigaseal 

cell attached state leads to higher access resistances66. Further, we also wanted to assess 

the effect if any, tissue displacement had on these gigasealed neurons. The mean and 

standard deviation of the access resistances were 49.4 + 23.9 MΩ (n = 8 cells that were 

successfully broken into immediately upon establishment of gigaseal), and 41.4 + 14.6 

49.4 + 23.9 MΩ ( (n = 15 cells that were gigasealed held in that state when other channels 

were conducting neuron hunting). We found no statistically significant difference in the 

access resistances of the two datasets (t-test, p > 0.86).  

 

4.7 Experimental Methods 

4.7.1. Surgical Procedures 

Surgical procedures were conducted similar to that described previously (see 

Chapter 2). All animal procedures were approved by the MIT Committee on Animal 

Care.  Adult male C57BL/6 mice (Taconic), 8-12 weeks old, were anesthetized using 

ketamine/xylazine (initially at 100 mg/kg and 10 mg/kg, and redosed at 30-45 minute 

intervals with 10-15% of the initial ketamine dose as needed, using toe pinch reflex as a 

standard metric of anesthesia depth).  The scalp was shaved, and the mouse placed in a 
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custom stereotax, with ophthalmic ointment applied to the eyes, and with Betadine and 

70% ethanol used to sterilize the surgical area.  Three self-tapping screws (F000CE094, 

Morris Precision Screws and Parts) were attached to the skull and a plastic headplate 

affixed using dental acrylic.  Once set (~20 minutes), the mice were removed from the 

stereotax and placed in a custom-built low profile holder.  A dental drill was used to open 

up 4 craniotomies (0.25 - 0.5 mm diameter, within a spacing of 1 mm) by thinning the 

skull until ~100 µm thick, and then a small aperture was opened up with a 30 gauge 

needle tip. Cortical craniotomies were opened at stereotaxic coordinates:  anteroposterior, 

-1.5 to +0 mm relative to bregma; mediolateral, 1-3 mm left or right of the midline; 

neuron hunting typically began at a depth of ~ 400 µm depth. The dura was removed 

using a pair of fine forceps, or in some instances, not removed at all. For dampening the 

motion artifacts of the brain, we used 2% agarose to cover the brain surface. Experiments 

typically lasted 5 hours, at the end of which the mice were euthanized via cervical 

dislocation when fully anesthetized. 

 

4.7.2. Electrophysiology  

 

Borosilicate glass pipettes (Warner) with resistances between 3-9 MW, were 

pulled using a filament micropipette puller (Flaming-Brown P97 model, Sutter 

Instruments), and stored in a closed petri dish to reduce dust contamination. During each 

experiment we used atleast 60-70 pipettes. They were filled with intracellular pipette 

solution consisting of (in mM): 125 potassium gluconate (with more added empirically at 
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the end, to bring osmolarity up to ~290 mOsm), 0.1 CaCl2, 0.6 MgCl2, 1 EGTA, 10 

HEPES, 4 Mg ATP, 0.4 Na GTP, 8 NaCl (pH 7.23, osmolarity 289 mOsm), as used in the 

past90.  

4.7.3. Multipatcher robot operation  

The first step of the algorithm started with the pipettes having been installed in the 

holders. A program valve_reset.vi (See Appendix B – “Multipatcher User Manual”) was 

executed in Labview to configure the pressure switching board to its default 

configuration, resulting all pipettes being maintained in high positive pressure state.  

We used 3-axes linear actuators (Sutter Instruments) to manually position the pipette tips 

over the craniotomy (or multiple craniotomies) 20-30 mm above the brain surface using a 

control joystick with the aid of a stereomicroscope (Nikon). The pipette voltage offsets 

were automatically nullified by the “pipette offset” function in the Multiclamp 

Commander (Molecular Devices) and the Multipatcher_ver1.0.vi program initiated. A 

complete set of instructions on the use of the multipatcher software is described in 

Appendix B – “Multipatcher User Manual”. 

 

4.8. Conclusion 

 

The multipatcher represents the first demonstration of a scalable platform capable 

of conducting multidimensional single cell measurements to the neuronal circuit level. 

For the first time a realistic solution for linking cellular level measurements to systems 
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level characterization in the intact brain has emerged. The algorithms developed for the 

multipatcher, build on the existing autopatcher algorithm that we have previously 

reported (Chapter 2), and takes into consideration the mechanical interactions of 

pipettes, and the surrounding brain tissue while being actuated. We found that the quality 

of recordings obtained with the mutlipatcher robot was comparable to the quality of 

recordings obtained with the single channel autopatcher system. When combined with 

custom hardware, it is thus scalable to control arbitrarily large numbers of pipettes in the 

intact brain. Further if the hardware can be miniaturized with better precision in 

placement within much smaller regions spanning local microcircuits96, 97 (< 200 µm), it 

can be used to assess synaptic connectivity between neurons in a microcircuit in the intact 

brain. Multiple electrodes can also be used to record from varied interconnected regions 

of the brain, opening up possible experiments to assess how sub-threshold membrane 

potential fluctuations are correlated across these regions, such sensory thalamo-cortical 

circuits, or even more dynamic processes like memory formation.  

The scalability in the electrode numbers means that the multipatcher can be used 

as a high-throughput tool for systematically obtaining large electrophysiological datasets 

for analyzing brain circuits. If combined algorithms that enable automated single cell 

RNA harvesting, the robot can be used to probe and obtain genetic information from 

large numbers of cells. Such a strategy can be generalized to other frontiers in biology, 

bioengineering, and medicine in which the assessment of the properties of single cells, 

embedded within intact tissue, is desired but has not been achievable in a systematic 

high-throughput fashion.  For example, analyzing how different cells in a neural circuit 

respond to a drug in specific brain states, performing electrical characterizations of cells 
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in tissues removed during surgery, determining how different individual cells within a 

tumor biopsy sample vary in gene expression, and assessing how tissue-engineered 

organs vary in cell to cell composition, may provide fundamental new capabilities in 

diagnostics, personalized medicine, and drug development.  

Further, the hardware architecture makes it amenable to integration with optical 

components for optogenetic stimulation74, 98, 99. This combined approach will enable 

assessments of the synaptic basis of how specific cell types coordinate network activity. 

The multipatcher opens up several interesting engineering challenges for scaling up.  

Currently, there are some limitations to the number of electrodes that can be 

simultaneously manipulated using these actuator systems due to their macroscopic scale. 

Attempting to build very larger arrays using conventional apparatus would run into 

stereotactic hindrance within 6-12 pipettes. Alternate strategies for miniaturizing the 

actuation systems, as well as using novel electrodes such as flexible fused silica 

pipettes100 can be explored. Since patch pipettes can be used only once, scaled up 

multipatchers will require hundreds of pipettes to be fabricated, filled and assembled for 

each experiment (we currently use 60-70 pipettes in a typical day, taking ~1 hour to 

fabricate them). Thus developing a means to fabricate pipettes in an automated fashion87 

can be advantageous. The time taken to assemble these pipette arrays will also increase 

proportionally with electrode numbers. Thus, strategies for automated filling and 

assembly of pipettes will need to be explored. Alternately, protocols can be developed to 

re-use assembled multipatcher arrays by attempting to clean pipettes tips101 or the 

hardware can be developed so as to allow robotic assembly of pipettes. Denser pipette 

arrays will increase the tissue displacement effects, and thus newer pipette geometries 



 99 

with thinner shanks, will be needed. Finally, as the number of channels increase, the cost 

of the amplifiers will be significant. Thus, low cost amplifiers dedicated for patch 

clamping102 need to be used to reduce the cost of patching.  
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CHAPTER 5 

CONCLUSION AND FUTURE PERSPECTIVE 

 

5.1. Conclusions 

Whole-cell patch clamp recordings of the electrical activity of neurons in vivo 

exhibit signal quality and temporal fidelity sufficient to report synaptic and ion channel-

mediated subthreshold events of importance for understanding not only how neurons 

compute during behavior, but how their physiology changes in disease states or in 

response to drug administration.  However, in vivo patching requires skill, and the 

hardware required is specialized and expensive.  Thus, in vivo patching has been utilized 

by a relatively small number of labs, and is usually regarded as a difficult technique.  The 

ability to patch neurons in vivo, in an automated, inexpensive fashion, would broadly 

enable neuroscientists to examine how neurons within a network respond at the synaptic 

or ion channel level to behavioral or brain-state changes, how such subthreshold 

dynamics are altered in animal models of brain disorders, and how synapses and ion 

channels in specific cells function in the critical in vivo setting, and are affected by 

pharmacological agents. In this thesis, we demonstrate that the process of in vivo patch 

clamping can be reduced to a reliable algorithm that can be executed in closed loop by a 

robotic system, which we term the autopatcher.  

 

This automated patch clamping robot achieves yields, quality and throughput that 

is comparable, or exceeds the capabilities of skilled human practitioners of this technique. 
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These recordings were firstly obtained in the cortex and hippocampus of adult 

anesthetized mice, and we have also shown that the same algorithms can be extended to 

obtain patch clamp recordings from awake, head fixed animals.  

In chapter 3, we integrated the autopatcher with optical fibers and demonstrated 

that the algorithm continued to be robust enough such that the same algorithm without 

any modifications could be used to guide fiber coupled patch pipettes to record from 

neurons expressing optogentic molecules and measure evoked sub-threshold 

photocurrents. Finally, we extended the basic hardware and software components of the 

autopatcher to develop robotic systems with multiple pipettes that can be simultaneously 

controlled in a semi-parallel fashion to obtain recordings from pairs and triplets of 

neurons in anesthetized mice. This represents the first demonstration of a scalable 

platform capable of conducting multiple whole cell patch clamp measurements from 

neuronal circuits in the intact mammalian brain, and for the first time a realistic solution 

for linking cellular level measurements to systems level characterization in the intact 

brain has emerged. 

 

5.2. Future perspectives 

 

 We have demonstrated that once an autopatching robot or multipatching robot is 

loaded with requisite pipettes filled with intracellular saline solutions, recordings can be 

obtained automatically. The current systems still need humans to prepare the patch 

electrdes and load then into the holders for each trial, a process that takes close to half the 

time taken to find a neuron and patch. Thus, all the tasks leading up to the process of 
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automated patch clamping such as the fabrication of patch pipettes, the filling of patch 

pipettes with intracellular pipette solution, the docking of patch pipettes in the holders, 

and subsequent positioning of the pipette tips at the surface of brain can also be 

automated to develop fully integrated robotic systems that can potentially run without 

human intervention throughout the entire length of the experiments. Such fully 

roboticized systems will enable a single human operator to control many rigs 

simultaneously, enabling the accumulation of large datasets, which are currently not 

possible with in vivo electrophysiology studies.  

 

 A current focus in systems neuroscience has been to determine the role played by 

specific cell types, in neuronal signal processing. While we have demonstrated 

automation of “blind” in vivo patch clamping, in our pilot experiments we have been 

successful in obtaining whole cell recordings in acute slices (data not shown). Thus the 

automated patch clamping systems can be combined with fluorescence imaging optics to 

obtain whole cell recordings from multiple fluorescently identified neurons from intact 

slices, with potential applications in circuit mapping, or by integrating the 

autopatcher/mulitpatcher with two-photon imaging systems, targeted patch clamping of 

specific identified cell types can be conducted in vivo.  

 

Automation enables a fine degree of feedback control of the position and pressure 

states of the pipette, that is previously not possible by manual patch clamping. By 

incorporating advanced feedback algorithms and motion compensation mechanism so as 

to actuate the patch pipette in anticipation of brain motion, it is possible to develop 
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devices that can obtain whole cell recordings in conditions which a high degree of tissue 

movement, such as freely moving and behaving animals, where traditional static devices 

fail. For e.g., miniaturized head borne versions of the autopatcher actuators can be 

developed to enable patch clamp measurements from multiple neurons in freely moving 

animals, as demonstrated with single pipettes by Albert lee and colleagues, and advanced 

mechanisms for sensing and compensating for brain tissue displacement can be 

developed to conduct such recordings from awake behaving non-human primates: a feat 

that has not been possible thus far, due to the insurmountable challenges of tissue 

displacement.  

 

 
As a final note, at a molecular neuroscience level, it is critical to be able to 

analyze how ion channels and receptors contribute to neural computational processes in 

vivo, because the levels of synaptic input, neuromodulator tone, and electrical activity 

impinging upon a specific neuron in the intact brain, in a specific behavior or disease 

context, may alter the performance and function of a given ion channel or receptor from 

what one might expect from purely in vitro studies.  An understanding of the roles that 

ion channels and receptors play in intact brain networks (i.e., in vivo, and in the juvenile, 

adult, or aged brain), would greatly enhance our understanding of how a genetic or 

molecular change in an ion channel, results in a complex disease phenotype – important 

for guiding the way towards future therapeutic strategies.  Variations of the 

transcriptomic make up of single cells effect such changes in ion channel and receptor 

compositions of single neurons. Thus, there is great need for high-throughput tools that 

enable the measurement of transcriptomic properties of individual brain cells so that 
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systematic and integrative characterizations of the cells in a brain circuit become 

possible. If the existing autopatcher algorithms can be equipped with feed back control 

algorithms to optimally harvest the single cell transctriptomes for qPCR and single cell 

RNA sequencing analysis and if combined with the scalable architecture the 

multipatcher, such a tool that uniquely suitable for conducting such single cell 

transcriptome harvesting studies from large numbers of neurons in vivo can be realized.  

 

The richness of the electrophysiology data enabled by patch clamping has 

traditionally been a big incentive for neuroscientists to perform this art form. The idea of 

patch clamping as a tool for measurement of cellular phenomena has not gained traction 

in other areas of biology. Current methods (e.g. laser scanning micro-dissection) for 

isolating, categorizing and characterizing the cells in intact organ systems suffer from a 

lack of specificity and/or are low-throughput.  The tools described above will have the 

necessary specificity (the ability to isolate single cells via access their cytosolic contents), 

and, importantly, high enough throughout (by means of automation and scalability) to 

transform the field of single cell analysis in the basic sciences as well as clinical fields. It 

will enable biologists and clinicians to take an intact organ system (e.g. a cancer tumor) 

and perform integrative analyses of single cells’ gene expression profiles, morphologies, 

and, if relevant, electrophysiological characteristics. By enabling individuals to 

systematically accumulate datasets in the organ systems they study and in the states of 

interest (e.g., differentiating stem cell embryoid bodies), it will become possible to 

resolve the sources of cellular heterogeneity, and enable identification of rare and 

important cell types that is not possible with any of the existing techniques. 
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APPENDIX A 
 
 
AUTOPATCHER USER MANUAL 

 

Parts list for Autopatcher setup 

 

1. Patch clamp amplifier: Multiclamp 700B (Molecular Devices) 

2. Patch clamp headstage: CV-7B (Molecular Devices) 

3. Primary computer interface board: Digidata 1440B (Molecular Devices) 

4. Secondary computer interface board: NI USB-6259 (National Instruments) 

5. 3 axes linear actuator for manual positioning: MX7600L (Siskiyou) 

6. Programmable linear actuator with controller kit: PZC200-KT (Newport) 

7. Linear stage: MX460A-X (Newport) 

8. Electronic 2-way solenoid valves:  LDA0533215H-A (Lee company) 

9. BNC relay switch: (CX230, Tohtsu) 

 

A.1 Hardware Setup 

  

A.1.1. Installing programmable motor in standard in vivo electrophysiology setup 

 

This will depend on the configuration of an existing setup. To install a programmable 

linear motor in our in vivo electrophysiology rig, we machined a custom dovetail groove 

mounting plate to fix the CV 7B headstage to the Newport linear stage that is controlled 

using the piezo-motor (Fig. 1.1).  
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Figure A.1.1: Installing patch amplifier headstage onto to linear stage driven by 

peizomotor using a custom dovetail groove mounting plate 

 

The entire assembly was then mounted onto the 3 axes linear actuator (Siskiyou Inc), as 

shown in Fig 1B in the main manuscript. The motor was connected to the controller and 

interfacing with the computer was done as per the instructions in the NanoPZ system user 

manual provided by Newport Corporation: 

ftp://download.newport.com/MotionControl/Current/MotionControllers/PZC200/Manual/

NanoPZ.pdf 

 

A.1.2. Installing programmable pressure control valves 

 

The circuit diagram for actuation of the solenoid valves is shown in Fig. 1.2. Instructions 

to make pneumatic connections are shown in Fig. 1 and described below: 
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Figure A.1.2: Circuit diagram for controlling solenoid valves for pressure modulation 

 

1) Connect the Common port (output) of Valve 1 to pipette holder.  

2) Connect the Common port (output) of Valve 2 to normally open (N.O.) input port of 

Valve 1.  

3) Connect the Common port (output) of Valve 3 to normally closed (N.C.) input port of 

Valve 1. 

 

For port locations, see the mechanical drawing of the soleniod valves: 

http://www.theleeco.com/PDF.nsf/2355f3df133a527185256c9300562a42/e8bb4dc1b62a

5f54852569a6006b64d8/$FILE/LHDA0030000BA.pdf 

 

For computer control of the bank of valves, 

1) Connect Analog Out 1 (AO1) of the USB 6259 to Gate of MOSFET 1 to drive Valve 

1. 

2) Connect Analog Out 2 (AO2) of the USB 6259 to Gate of MOSFET 2 to drive Valve 

2. 

Valve 1 Valve 2

MOSFET 1

Valve 3

MOSFET 2 MOSFET 3

5 VDC

Analog out 1 Analog out 2 Analog out 3
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3) Connect Analog Out 3 (AO3) of the USB 6259 to Gate of MOSFET 3 to drive Valve 

3. 

 

 

A.1.3. Interfacing Amplifier to computer 

 

The signals for the Multiclamp 700B amplifier (Molecular Devices) are sent to and from 

two computer interface boards. The NIDAQ USB-6259 (National instruments) board is 

used to send signals to the amplifier during Autopatcher operation, and the Digidata 

1440A is used for recording with commercial software Pclamp (Molecular Devices) once 

whole cell is obtained. For this dual interface: 

 

1) Connect Analog Out 0 (AO0) of the NIDAQ USB-6259 to the channel A of the 

BNC relay switch. 

2) Connect the Analog out 0 (AO0) of the Digidata 1440B to channel B of the BNC 

relay switch. 

3) Connect the output of the BNC relay switch to the command input of the 

Multiclamp 700B amplifier. 

4) Connect Digital Out Ch0 of the NIDAQ board to the BNC relay input.  

5) Connect the primary scaled output of Multiclamp 700B to Analog IN 1 (AI 1) of 

the NIDAQ USB-6259 and analog input 0 (AI0) of the Digidata 1440B.  
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In its default configuration, the input command to the patch amplifier is sent from the 

NIDAQ board for automated patch clamping. Once a whole cell configuration is 

established, the “Record.vi” program can be run in labview to switch the inputs and data 

can be recorded in current clamp or voltage clamp using the clampex software. 

 

A.2. Initial Program Setup 

 

The Autopatcher program has been developed in Labview 8.6 (National Instruments) 

programming environment running in a Windows XP operating system. The Autopatcher 

in its current form will thus require a version 8.6 or higher version of Labview to run. 

Install the NiDAQmx driver for the USB-6259 data acquisition board. It can be 

downloaded from: 

http://zone.ni.com/devzone/cda/tut/p/id/6913  

 

For serial communication with the motor controller, ensure labview VISA is installed. 

It can be downloaded from: 

http://joule.ni.com/nidu/cds/view/p/id/2659/lang/en 

  

Follow the instructions below for setting up the program for automated whole cell patch 

clamping in vivo.  

 

A.2.1. Establishing serial communication with motor controller 
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1. Open patch automation.lvproj in labview project manager window. 

 

This contains all files that are called by the main program during autopatching. All files 

that need to be opened during the course of operation of the Autopatcher can be accessed 

using this project manager. 

 

2. Open “VisaInit.vi” 

 

 

 

Figure A. 2.1: Screen shot of the “Visainit.vi” program that needs to be run to initiate 

serial communication with motor controller 
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3. Specify the COM1 port in the Visa Session and serial port number to which the 

motor controller is connected to in the computer, and run the program (Fig. 2.1). 

 

NOTE: This needs to be done prior to the first Autopatcher program operation after every 

computer bootup. 

 

 

2.2. User Settings in the “Autopatcher_ver1.0.vi” 

 

4. From the same library, open “Autopatcher_ver0.1.vi” 

 

The user interface for the Autopatcher program has 4 tabs: (a) Control panel, (b) Neuron 

hunt, (c) Seal formation and (d) Break-in. 

 

2.2.1. Control Panel Tab Settings (Fig. 2.2.1) 
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Figure 2.2.1: Computer screen capture of the Control panel tab of the Autopatcher 

program 

 

1. Specify the COM port that was initialized in the “VisaInit.vi” program in the Visa 

Handle scroll down menu option. 

2. Enter Controller number as 1. 

3. Specify the upper depth (Zu in micrometers) of the region you want to record 

from. 
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4. Specify the lower depth (Zl in micrometers) of the region you want to record 

from. During operation, the Autopatcher will lower the pipette to Zu and start 

scanning for neurons. It will stop at Zl if no neuron is encountered in that range. 

5. There are two file path dialog boxes to specify the location in which the plot of 

Pipette resistance as a funtion of depth (during neuron hunting) and pipette 

resistance as a function of time (during attempted gigaseal formation) are stored. 

Specify these file paths as needed. 

 

A. 2.2.2. Neuron Hunt Tab Settings (Fig. A.2.2.2) 

 

NOTE: This is a debug-oriented version of the Autopatcher software, allowing 

parameters to be changed; since we never changed the parameters in all of our 

autopatching experiments, these parameters in principle could be hardwired into the code.  
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Figure A.2.2.2: Computer screen capture of the Neuron Hunt tab in the Autopatcher 

program 

 

1. Specify the membrane test parameters in a manner similar to the Membrane test 

done in Pclamp. (e.g., Command frequency = 10 Hz, Holding = 0 mV, Pulse = 10 

mV) 

2. Set detection threshold between 0.2-0.3, as required.  

3. Set pipette velocity at 2 micrometers/step. 
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NOTE: This tab displays the last three pipette resistance readings Rp (i), Rp (i-1) and Rp 

(i-2). Status bar indicates the current state of the program execution. (i.e., ‘Hunting for 

neurons at desired depth’ or ‘Neuron found’) Two graphical charts are provided that plot 

the currents flowing through the pipette (Membrane test) and the pipette resistance as a 

function of position in the brain. 

 

 

A.2.2.3. Seal Formation Tab Settings (Fig. 2.2.3) 

 

NOTE: This is a debug-oriented version of the Autopatcher software, allowing 

parameters to be changed; since we never changed the parameters in all of our 

autopatching experiments, these parameters in principle could be hardwired into the code.  
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Figure A.2.2.3: Computer screen capture of Seal formation tab in Autopatcher program 

 

 

1. Specify the membrane test parameters in a manner similar to the Membrane test 

done in Pclamp. (e.g., Command frequency = 10 Hz, Holding = 0 mV, Pulse = 10 

mV) 

2. Set the time at which positive pressure is released. In all our experiments it was 

set at 10 seconds. Similarly, set the time at which positive pressure needs to be 

reapplied if needed. In all our experiments, we set it at n arbitrarily large value 

(~1500 seconds). 
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3. Set the times at which suction pressures need to be applied and removed (15 s and 

25 s respectively). 

 

NOTE: In this tab, there are three graphical charts that plot the pipette resistance, the 

current flowing though the pipette during membrane test, and the holding potential. Two 

numerical indicators display the most recent pipette resistance (Rp) and holding current 

values. 

 

A.2.2.4. Break-in Tab Settings (Fig. A.2.2.4) 

 

NOTE: This is a debug-oriented version of the Autopatcher software, allowing 

parameters to be changed; since we never changed the parameters in all of our 

autopatching experiments, these parameters in principle could be hardwired into the code.  
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Figure A.2.2.4: Computer screen capture of Break-in tab in Autopatcher program 

 

1. Specify whether you want to zap during break-in, or break-in using suction pulses 

only. 

2. If zap function is used, specify the pulse duration (e.g,. 200 ms) and amplitude 

(e.g., 1000 mV) 

 

NOTE: A graphical chart that displays the membrane current is provided to determine 

whether break-in has occurred or not. 

 



 119 

Once these setting have been input for the first trial, they remain the same for the rest of 

the trials. 

 

A.3. Manual Tasks before running the Autopatcher program 

 

1. Fill patch pipette with internal saline solution and install in pipette holder. 

2. Open and run Valve “reset.vi” to reset all valves to default configuration. 

 

3. Application of pressures: 

i. Apply High positive pressure at N.O. port of Valve 2. 

ii. Apply Low positive pressure at N.C. port of Valve 2. 

iii. Apply suction pressure at N.C. port of valve 3. 

 

In the default configuration, the valve system output high positive to the pipette to ensure 

that the tip does not get blocked accidently.  

 

4. Position pipette in the center of the craniotomy, 20-30 micrometers above the 

brain surface using a stereomicroscope for visualization. 

5. Open the Multiclamp 700B commander program. (See Fig. 3) 

6. Make sure the amplifier is in Voltage clamp mode by selecting VC mode button. 

7. Ensure Holding current is set at 0 mV. 

8. Reset the pipette offset by using the Auto pipette offset function. 

9. Neutralize for pipette capacitance by Auto correcting for Cp Fast and Cp. 
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The Autopatcher program can now be run for Automated whole cell patch clamping in 

vivo. 

 

 

Figure A.3: Settings in the Multiclamp commander before Autopatcher program is 

executed 
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4. Open and run “Command_switch.vi”. Run this continuously during entire experiment. 

At any time the command input going to the Multiclamp 700B can be switched between 

NIDAQ USB 6259 (for autopatching) and Digidata 1440B (for post patch recording) 

using software controls. 

 

A. 5. Running the Autopatcher Program 

 

Select the control panel tab and run the Autopatcher_ver0.1 program in labview making 

sure all the setting in the tabs are specified as described in Section 2.2. The program is 

executed as described in Chapter 2 (Section 2.12).  

 

1) The Autopatcher measures and displays the pipette resistance Racsf 

outside the brain. 

2) The pipette is then lowered to the specified depth Zu under high positive 

pressure. 

3) The pressure is lowered to low positive pressure and the pipette resistance 

Rzu is measured to check for blockage.  

4) If the pipette is blocked, “Pipette blocked, install new pipette” message is 

displayed under Pipette Tip Status (See Fig. 2.2.1). It is then retracted 

back and the program stops. Install a new pipette, and performs the 

manual tasks described in section 3 before restarting the Autopatcher. 
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5) If the pipette is not blocked, “Pipette not blocked” message is displayed 

under Pipette Tip Status, and the Autopatcher initiates Neuron Hunt. 

Switch to the ‘Nueron Hunt’ tab. 

6) The Autopatcher now moves the pipette in steps specifed by the user (e.g., 

2 micrometers) and measures the pipette resistance at each step. 

Autopatcher either stops pipette actuation when a neuron is encountered or 

when it has scanned through to depth Zl without encountering a neuron. In 

the latter case the program stops. If a neuron is encountered, the 

Autopatcher initiates Seal formation protocol. Switch to ‘Seal formation’ 

tab. 

7) The pipette resistance can be monitored over time in the Rseal graph 

indicator. Release of positive pressure and application of suction, as well 

as ramp down of holding potential takes places as described in Chapter 2. 

Typically in a successful attempt, a gigaseal is formed and holding voltage 

is ramped down to –65mV in 80 seconds. At the end of 80 seconds, if seal 

resistance less than a gigaohm, stop program. Retract pipette using the 

manual xyz positioner. A new trial can be started by installing a new 

pipette as described in Section 3. 

8) If a break-in occurs spontaneously, stop program and go to Step 11.  

9) If break-in does not occur spontaneously, switch to the Break-in tab. If 

attempting to break-in using suction pulses, restore the suction pressure in 

the suction port. Then press ‘Attempt break-in’. The Autopatcher will 

apply suction pressure for 100 ms, if successful typical membrane current 



 123 

transients can be seen in the graph indicator. A similar procedure is 

followed for break-in using the zap function. If unsuccessful, press stop 

break-in attempt after 5 seconds, and retry until successful break-in 

occurs. Alternately, break-in can be achieved by using the manual overide 

of suction pressure option in the gigaseal formation tab and applying the 

requisite voltage zap using the ‘Zap’ button in the Multiclamp 

commander. If using this option, make sure the manual overide is 

switched off after break-in, else the cell contents may be dialized into the 

pipette. 

10) Once a whole cell recording is established, stop program.  

11) Set the amplifier to I=0 mode using the Multiclamp commander software 

and select clampex in the front panel of the “Command_switch.vi” 

program that was initiated in Step 4. This will automatically enable the 

command input to the amplifier to be sent by the Digidata 1440B. Whole 

cell recordings in Voltage clamp or current clamp can be carried out in 

using Pclamp software (Molecular Devices).  

 

Biocytin Filling Experiments 

After a neuron has been recorded in whole cell mode for a sufficiently long period of 

time to fill it with biocytin (~10 minutes), the “Retract_pipette.vi” program can be run to 

attempt to form an outside out patch. The program has two user set distances.  

1) Specify the distance you want to retract the pipette at a slow speed (e.g., 3 mm/s). 

We typically set it at 100-150 mm to get an outside out patch.  
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2) Specify the distance you want the pipette to be rapidly retracted, typically set to 

the depth of the recording, as noted while running the “Autopatcher_ver1.0.vi”. 

3) Run the program. The program will first retract the pipette at steps of 3 mm every 

second for the distance specified by the user. Once that distance is reached, the 

program rapidly retracts the pipette by the distance specified in Step 2. 
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APPENDIX B 
 
 

MULTIPATCHER USER MANUAL 

 

Parts list for the multipatcher setup 

 

1. Patch clamp amplifiers: Multiclamp 700B (Molecular Devices) 

2. Patch clamp headstages: CV-7B (Molecular Devices) 

3. Primary computer interface board: Digidata 1440B (Molecular Devices) 

4. Secondary computer interface board: NI cDAQ 9263 (National Instruments) 

5. 3 axes linear actuators for manual positioning: MPC 285 (Sutter) 

6. Programmable linear actuators: PZC200-KT (Newport) 

7. Central switch box for addressing individual motors: PZC200-SB (Newport) 

8. Linear stages: MX460A-X (Newport) 

9. Electronic 2-way solenoid valves:  LDA0533215H-A (Lee company) 

10.  BNC relay switches: (CX230, Tohtsu) 

 

B.1 Hardware Setup 

 

B.1.1. Installing programmable motor in standard in vivo electrophysiology setup 
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This will depend on the configuration of an existing setup. To install a programmable 

linear motor in our in vivo electrophysiology rig, we machined a custom dovetail groove 

mounting plate to fix the CV 7B headstage to the Newport linear stage that is controlled 

using the piezo-motor (Fig. A.1.1). Unlike the autopatcher setup where this was mounted 

onto a Siskiyou manipulator, we mounted this programmable linear stage to mount onto 

MPC-285 (Sutter Instruments Inc). This way we could control 4 MPC-285’s using a 

single ROE 200 controller.  

 

The motors was connected to a switch box (PZC-200SB) controller and interfacing with 

the computer was done as per the instructions in the NanoPZ system user manual 

provided by Newport Corporation: 

1. ftp://download.newport.com/MotionControl/Current/MotionControllers/PZC200/

Manual/NanoPZ.pdf 

 

B.1.2. Installing programmable pressure control valves 

 

The circuit diagram for actuation of one set of solenoid valves solenoid valves used to set 

the pressure states in one of the pipettes is shown in Fig. B.1.2. Instructions to make 

pneumatic connections are shown in Fig. 4.1 and described below: 
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Figure B.1.2: Circuit for controlling solenoid valves for pressure modulation 

 

1) Connect the Common port (output) of Valve 1 to pipette holder 1.  

2) Connect the Common port (output) of Valve 2 to normally open (N.O.) input port of 

Valve 1.  

3) Connect the Common port (output) of Valve 3 to normally closed (N.C.) input port of 

Valve 4. 

This completes the valve tubing connections for pipette 1. 

 

4) Connect the Common port (output) of Valve 4 to pipette holder 2.  

5) Connect the Common port (output) of Valve 5 to normally open (N.O.) input port of 

Valve 4.  

6) Connect the Common port (output) of Valve 6 to normally closed (N.C.) input port of 

Valve 4. 

Valve Bank 
for Ch4

Valve Bank 
for Ch3

Valve Bank 
for Ch1

Valve Bank 
for Ch2

Control signals
from secondary
digitizer
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This completes the valve tubing connections for pipette 2. 

 

7) Connect the Common port (output) of Valve 7 to pipette holder 3.  

8) Connect the Common port (output) of Valve 8 to normally open (N.O.) input port of 

Valve 7.  

6) Connect the Common port (output) of Valve 9 to normally closed (N.C.) input port of 

Valve 7. 

This completes the valve tubing connections for pipette 3. 

 

7) Connect the Common port (output) of Valve 10 to pipette holder 4.  

8) Connect the Common port (output) of Valve 11 to normally open (N.O.) input port of 

Valve 10.  

6) Connect the Common port (output) of Valve 12 to normally closed (N.C.) input port of 

Valve 10. 

This completes the valve tubing connections for pipette 4. 

To interface each of these four modules to the upstream pressure regulators, connect 

normally open (N.O.) input ports of Valve 2, 5, 8 and 11 to the high positive pressure 

source. Similarly, connect the normally closed (N.C.) input ports of Valve 2, 5, 8 and 11 

to the low positive pressure source. Finally, connect the normally closed (N.C.) input 

ports of Valve 3, 6, 9 and 12 to the low positive pressure source. 

 

For port locations, see the mechanical drawing of the soleniod valves: 
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http://www.theleeco.com/PDF.nsf/2355f3df133a527185256c9300562a42/e8bb4dc1b62a

5f54852569a6006b64d8/$FILE/LHDA0030000BA.pdf 

 

For computer control of the bank of valves, 

1) Connect Analog Out 4 (AO4) of the cDAQ9263 to Gate of MOSFET1 to drive Valve 

1. 

2) Connect Analog Out 5 (AO5) of the cDAQ9263 to Gate of MOSFET2 to drive Valve 

2. 

3) Connect Analog Out 6 (AO6) of the cDAQ9263 to Gate of MOSFET3 to drive Valve 

3. 

4) Connect Analog Out 7 (AO7) of the cDAQ9263 to Gate of MOSFET4 to drive Valve 

4. 

5) Connect Analog Out 8 (AO8) of the cDAQ9263 to Gate of MOSFET5 to drive Valve 

5. 

6) Connect Analog Out 9 (AO9) of the cDAQ9263 to Gate of MOSFET6 to drive Valve 

6. 

7) Connect Analog Out 10 (AO10) of the cDAQ9263 to Gate of MOSFET7 to drive 

Valve 7. 

8) Connect Analog Out 11 (AO11) of the cDAQ9263 to Gate of MOSFET2 to drive 

Valve 8. 

9) Connect Analog Out 12 (AO12) of the cDAQ9263 to Gate of MOSFET3 to drive 

Valve 9. 
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10) Connect Analog Out 13(AO13) of the cDAQ9263 to Gate of MOSFET7 to drive 

Valve 10. 

11) Connect Analog Out 14 (AO13) of the cDAQ9263 to Gate of MOSFET2 to drive 

Valve 11. 

12) Connect Analog Out 15 (AO13) of the cDAQ9263 to Gate of MOSFET3 to drive 

Valve 12. 

 

B.1.3. Interfacing patch amplifiers to computer 

 

Patch amplifiers

Primary 
digitizer

Secondary 
digitizer

Switch boxes

Motor controllers

Pressure switching 
unit

Electronic 
pressure regulator 

unit
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Figure B.1.3: Illustration of the amplifier connections. Also shown are the motor 

controllers and the pressure switching units.  

 

The signals for the Multiclamp 700B amplifiers (Molecular Devices) are sent to and from 

two computer interface boards. The NI cDAQ 9204 (National instruments) board is used 

to send signals to the amplifier during multipatcher operation, and the Digidata 1440A is 

used for recording with commercial software Pclamp (Molecular Devices) once whole 

cell recordings are obtained. For this dual interface: 

 

1) Connect Analog Out 0-3 (AO0, AO1, AO2 and AO3) of the NI cDAQ 9263 to the 

channels A of the 4 BNC relay switches. 

2) Connect the Analog out 0-3 (AO0, AO1, AO2 and AO3) of the Digidata 1440B to 

channels B of the BNC relay switch. 

3) Connect the outputs of the BNC relay switches 1-4 to the command inputs of the 

two Multiclamp 700B amplifiers. Each amplifier is equipped with 2 channels, 

thus making up 4 multipatcher channels. 

4) Connect Analog Outs 13-16 of the cDAQ9263 board to the BNC relay inputs for 

switching the command inputs.  

5) Connect the primary scaled output of Multiclamp 700B to Analog IN 1 (AI 1) of 

the NIDAQ USB-6259 and analog input 0 (AI0) of the Digidata 1440B.  

 

In its default configuration, the input commands to the patch amplifier are sent from the 

cDAQ board for automated patch clamping. Once multipatching is completed, exiting the 
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program results in the BNC switches changing configurations so as to let the Digidata 

1440B to send the command inputs during data acquisition. 

B.2. Initial Program Setup 

 

The Multipatcher program has been developed in Labview 2011 (National Instruments) 

programming environment running in a Windows 7 professional operating system. The 

mutlipatcher in its current form will thus require a version 2011 or higher version of 

Labview to run. All defaults values for the program user units are pre-saved in the 

program multipatcher_ver0.30.vi 

Install the NiDAQmx driver for the USB-6259 data acquisition board. It can be 

downloaded from: 

http://zone.ni.com/devzone/cda/tut/p/id/6913  

 

For serial communication with the motor controller, ensure labview VISA is installed. 

It can be downloaded from: 

http://joule.ni.com/nidu/cds/view/p/id/2659/lang/en 

  

Follow the instructions below for setting up the program for automated multicellular 

whole cell patch clamping in vivo.  

 

B.2.1. Establishing serial communication with motor controller 

 

1. Open multipather.llb in labview library manager window. 
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This contains all files that are called by the main program during multipatching. All files 

that need to be opened during the course of operation of the multipatcher can be accessed 

using this project manager. 

 

2. Open “VisaInit.vi” 

 

 

 

Figure B.2.1: Screen shot of the “Visainit.vi” program that needs to be run to initiate 

serial communication with motor controller 
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3. Specify the COM3 (for actual COM port assignment in your computer check 

device manager setting) port in the Visa Session and serial port number to which 

the motor controller is connected to in the computer, and run the program (Fig. 

2.1). 

 

NOTE: This needs to be done prior to the first multipatcher program operation after every 

computer bootup. 

 

 

B. 2.2. User Settings in the “Multipatcher_ver.30.vi” 

 

4. From the same library, open “Multipatcher_ver.30.vi” 

 

The user interface for the Mutlipatcher program has 3 tabs: (a) Control panel, (b) Neuron 

hunt, and (c) Seal formation 

 

2.2.1. Control Panel Tab Settings (Fig. 2.2.1) 
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Figure B.2.2.1: Computer screen capture of the Control panel tab of the multipatcher 

program 

 

1. Specify the COM port that was initialized in the “VisaInit.vi” program in the Visa 

Handle scroll down menu option. 

2. Enter Controller number as 1. 

3. Specify the upper depth (Zu in micrometers) for all the pipettes of the region you 

want to record from. 

4. There are two file path dialog boxes to specify the location in which the plot of 

Pipette resistance as a funtion of depth (during neuron hunting) and pipette 
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resistance as a function of time (during attempted gigaseal formation) are stored. 

Specify these file paths as needed. 

 

B. 2.2.2. Neuron Hunt Tab Settings (Fig. A.2.2.2) 

 

NOTE: This is a debug-oriented version of the Multipatcher software, allowing 

parameters to be changed; since we never changed the parameters in all of our 

autopatching experiments, these parameters in principle could be hardwired into the code.  

 

 

 

Figure B.2.2.2: Computer screen capture of the Neuron Hunt tab in the multipatcher 

program 
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1. Specify the membrane test parameters in a manner similar to the Membrane test 

done in Pclamp. (e.g., Command frequency = 10 Hz, Holding = 0 mV, Pulse = 10 

mV) 

2. Set detection threshold between 0.2-0.3, as required.  

3. Set pipette velocity at 2 micrometers/step. 

 

NOTE: Status bar indicates the current state of the program execution. (i.e., ‘Hunting for 

neurons at desired depth’ or ‘Neuron found’) Two graphical charts are provided that plot 

the currents flowing through the pipette (Membrane test) and the pipette resistance as a 

function of position in the brain. 

 

 

B.2.2.3. Seal Formation Tab Settings (Fig. 2.2.3) 

 

NOTE: This is a debug-oriented version of the Mutlipatcher software, allowing 

parameters to be changed; since we never changed the parameters in all of our 

autopatching experiments, these parameters in principle could be hardwired into the code.  
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Figure B.2.2.3: Computer screen capture of Seal formation tab in Multipatcher program 

 

 

1. The default value for releasing positive pressure during gigasealing was set at  10 

seconds. The user can change these setting for the individual channels using the 

controls shown in the figure.   

2. Similarly, by default, suction pressure during each gigasealing attempt was set so 

as to get activated between 15 to 25 seconds. This could be manually adjusted as 

well by the user. The user can chose to manually intervene in the suction pressure 

application as well using the manual override option. 

NOTE: In this tab, there are four graphical charts that plot the pipette resistance during 

the gigasealing attempts.  
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B.3. Manual Tasks before running the multipatcher program 

 

1. Fill patch pipette with internal saline solution and install in pipettes in the four 

holders. 

2. Open and run “Valves_reset.vi” to reset all valves to default configuration. 

3. Ensure that the pressures from the analog pressure regulators are set at 800 mBar 

(high positive pressure), 25 mBar (low positive pressure), and -15 mBar (suction 

pressure). 

 

In the default configuration, the valve system outputs high positive to all the pipettes to 

ensure that the tips do not get blocked accidently.  

 

4. Position pipettes in the the craniotomy, 20-30 micrometers above the brain 

surface using a stereomicroscope for visualization. Ensure they are at the 

sufficient distance so as to not collide with each other during multipatcher 

operation.  

5. Open two instances of Multiclamp 700B commander program. Assign the two 

multiclamp amplifiers to each of these commander windows.  (See Fig. B.3) 

6. Make sure all four channels of the patch amplifiers are in Voltage clamp mode by 

selecting VC mode button. 

7. Ensure Holding currents are set at 0 mV. 

8. Reset the pipette offsets by using the Auto pipette offset function. 

9. Neutralize for pipette capacitances by Auto correcting for Cp Fast and Cp. 
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The multipatcher program can now be run for Automated whole cell patch clamping in 

vivo. 

 

 

Figure B.3.1: Settings in the Multiclamp commander before multipatcher program is 

executed 
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10. Open and run “Command_switch.vi”. Run this continuously during entire 

experiment. At any time the command input going to the Multiclamp 700B can be 

switched between cDAQ (for multipatching) and Digidata 1440B (for post patch 

recording) using software controls. 

Select the control panel tab and run the Multipatcher_ver0.30 program in labview making 

sure all the setting in the tabs are specified as described in Section 2.2. The program is 

executed as described in Chapter 4 (Section 4.8).  

 

1) The multipatcher measures and displays the pipette resistances Racsf of all 

the pipettes outside the brain. 

2) The pipettes are then lowered to the specified depths Zui under high 

positive pressure. 

3) The pressures in the pipettes are lowered to low positive pressure and the 

pipette resistances Rzui are measured to check for blockage.  

4) If any of the pipettes are blocked, they get deactivated, as indicated by the 

red Boolean displayed next to the depth settings.  

5) For the unblocked pipettes, the multipatcher displays “Pipette not 

blocked” message is displayed under Pipette Tip Status, and the 

mulitpatcher initiates Neuron Hunt. Switch to the ‘Nueron Hunt’ tab. 

6) The multipatcher now moves the each of the active pipettes in steps 

specifed by the user (e.g., 2 micrometers) and measures the pipette 

resistances at each step. When one of the channels encounters a neurons, 
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the mulitpatcher stops and shifts to gigasealing. Switch to ‘Seal formation’ 

tab. 

7) The pipette resistance of the channel attempting to form gigaseals can be 

monitored over time in the Rseal graph indicator. Release of positive 

pressure and application of suction, as well as ramp down of holding 

potential takes places as described in Chapter 2. Typically in a successful 

attempt, a gigaseal is formed and holding voltage is ramped down to –

65mV in 60 seconds. At the end of 80 seconds, the multipatcher 

deactivates the motor for the channel that just attemped gigasealing, and 

moves back to step 6. Steps 6 and 7 are repeated until all active pipettes 

attempt gigasealing.  

8) The user can then use program “Breakin.vi” to select the channels that 

he/she wants to obtain whole cell recordings in and attempt break in as 

described in Appendix A.  

9) Once whole cell recordings are obtained in all the necessary channels, the 

commandswitch.vi program is used to switch to digidata comman input.  

10) Set the amplifier to I=0 mode for all channels, using the Multiclamp 

commander software and select clampex in the front panel of the. This 

will automatically enable the command input to the amplifier to be sent by 

the Digidata 1440B. Whole cell recordings in Voltage clamp or current 

clamp can be carried out in using Pclamp software (Molecular Devices).  
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