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BACKGROUND 
Capstone design courses seek to prepare engineering students for industry by challenging student 
teams to solve real-world problems. To improve this preparation, university programs have recently 
focused on creating multidisciplinary teams. However, there is limited quantitative evidence showing 
that multidisciplinary student engineering teams develop higher quality projects or are better pre-
pared for the work force.

HYPOTHESIS

Students who take a multidisciplinary capstone design (MCD) course have better outcomes than 
monodisciplinary capstone students as measured by job placement and/or independent evaluation by 
industrial professionals of students’ products.

METHODOLOGY

A single treatment was administered to Georgia Tech capstone design students for one semester with 
three course conditions: (1) monodisciplinary biomedical, (2) monodisciplinary mechanical, or (3) 
multidisciplinary biomedical and mechanical engineering. After course completion, students’ cumu-
lative GPA, job placement, and design exposition score were obtained and analyzed. This analysis 
used a generalized linear model for the exposition score and a logistic model for job placement out-
comes.

RESULTS 
A general linear model showed that all students who took the MCD course, regardless of major, pro-
duced an engineering solution that was better than that of their monodisciplinary contemporaries as 
measured by external industry professionals. Logistic and multinomial regressions showed that the 
MCD course increased the odds of employment significantly for biomedical engineering students.

CONCLUSIONS

In this preliminary investigation, the MCD teams’ holistic performance in innovation, utility, analy-
sis, proof of concept, and communication skills was superior to that of their monodisciplinary coun-
terparts, and, on average, they were hired more frequently.
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INTRODUCTION

Across the United States, undergraduate engineering university programs commonly cul-
minate in a capstone design course, an integrative course in which student teams synthe-
size solutions to open-ended, real-world problems (Dym, Agogino, Eris, Frey, & Leifer, 
2005). Typically, in one or two semesters of the course, teams define a problem, plan their 
approach, propose creative solutions, analyze the solutions, produce or implement the so-
lutions, and communicate them internally and externally.

Traditionally, at the Georgia Institute of Technology, where this study was conducted, 
capstone design is monodisciplinary with teams averaging five students from the same 
engineering discipline on a team (e.g., mechanical, electrical, biomedical, industrial, or 
aerospace). A set of teams, typically subdivided into course sections to accommodate large 
enrollments, is administered solely within these disciplines – from problem definition to 
an adjudicated exposition of design solutions at the course climax: the Capstone Design 
Expo.

The course participants (students, faculty, problem sponsors) could benefit from a more 
multidisciplinary capstone design (MCD) experience, with team members representing 
more than one discipline working on problems similarly posed (National Academies Press, 
2001). Most compellingly, since these engineering students will need to survive and thrive 
in these multidisciplinary professional environments after graduation, the university envi-
ronment should seek to inculcate as many lessons as possible about their inherent challeng-
es and opportunities beforehand. As of 2005, approximately 35% of engineering capstone 
design courses included interdepartmental or multidisciplinary teams, an increase from 
21% in a 1994 survey of 1724 programs at 350 institutions (Howe & Willbarger, 2006). 
Therefore, as more engineering schools consider a scale-up of MCD initiatives, systematic 
quantitative and qualitative studies of viable structures, resources, incentives, effects, and 
perceptions should be undertaken. 

This preliminary investigation was conducted in collaboration with faculty and stu-
dents at the Georgia Institute of Technology Coulter Department of Biomedical Engi-
neering and the Woodruff School of Mechanical Engineering. Two models of product-
driven design were examined, sequestered (monodisciplinary) and integrative 
(multidisciplinary), by analyzing the effects of three versions of senior capstone design 
coursework implemented concurrently: two monodisciplinary sections (mechanical engi-
neering and biomedical engineering) and one multidisciplinary. This experiment was driv-
en by the following hypothesis: Students who take an MCD course have better outcomes 
than monodisciplinary capstone design students as measured by job placement and inde-
pendent evaluation from industrial professionals at the design exposition.  Due to the pre-
liminary nature of the investigation, we had to balance the difficulty in getting quantitative 
data for a large percentage of graduated seniors with the relevance and likely significance of 
the parameters. Ideally, student performance would be assessed on the job (in graduate 
school or industry), in multidisciplinary teams, and evaluated to determine if MCD stu-
dents do better on multi-industry teams than monodisciplinary students in addition to as-
sessing job placement. Such surveys are exceedingly difficult to design, administer, and ob-
tain with statistical value; hence, they were not included in this initial investigation.

The analysis was done over the course of a single semester of capstone design at Geor-
gia Tech. All projects were self-selected by students, and team formation was done organi-
cally by the students. Teams ranged from three to eight members with MCD biased to-
ward large teams. The vast majority of students take this class in their final year after 
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completing most of their coursework. Teams were supported either by department funds 
or industry sponsors. Departmental teams received a maximum of $500 dollars while in-
dustry groups had no funding cap. No MCD teams had industrial sponsors. All teams 
were provided with an expert advisor in their project’s field to facilitate design and provide 
analysis expertise. The instructors carefully monitored the MCD teams to ensure a truly 
integrative team experience, as opposed to one in which the team divided into two groups 
of specialists, each performing a single task. This monitoring was done to overcome inte-
grative problems that other multidisciplinary programs have reported (Leonard, Schmidt, 
Schmidt, & Smith, 2006). 

In this paper, the structure of the course will be described in more detail, examples of 
student teams will be provided, and the metrics by which they were measured quantita-
tively will be introduced. Next, a statistical analysis of the effect of enrolling in the MCD 
section relative to the monodisciplinary sections, controlling for confounding factors, will 
be presented. This analysis is performed using a generalized linear model (GLM) for the 
continuous variables and a logistic regression to explore the effects of binomial variables. 
Finally, the results, their limitations, and a summary of the key findings are discussed. We 
note that this is purely an assessment of outcomes, not an assessment of the learning of the 
design process.

BACKGROUND

Capstone Design
Capstone design courses (also referred to as senior design) were developed in response to in-
dustry experts’ observations that graduating engineers were underprepared for real-world 
applications of their skills and knowledge (Dym et al., 2005). According to Bordogna, 
Fromm, and Edwards (1993), the primary goals of engineering education should be to de-
velop the students’ capabilities to integrate, analyze, innovate, synthesize, and understand 
contextually. The object of capstone design is to infuse a practical experience into a theory-
based undergraduate engineering curriculum. 

Participation in capstone design supports students in making the transition from stu-
dent communities of practice to professional communities of practices – that is, from 
classroom to real world (Lave, 1988). Working with a client-advisor from the field (pro-
fessional engineers, start-up companies, corporate representatives, physicians, technicians, 
hospitals, laboratories) in a type of apprenticeship, similar to what Lave and Wenger 
(1991) call legitimate peripheral participation, students are challenged with a real-world 
need. While capstone students are not full members with complete immersion in the pro-
fessional community (Lave, 1988), contextualizing the problem, need, or service within 
the field’s practices provides students the opportunity for situated learning (Lave & 
Wenger, 1991) and affords them the opportunity to apply their skills and knowledge to-
ward developing a robust understanding of what it means to be an engineer. This facili-
tates an identity shift from student to professional engineer ( Johri & Olds, 2011). 

Typically, capstone design courses employ a product-based learning (Prod-BL) ped-
agogical approach, which is defined by Leifer as a “problem oriented, project organized 
learning activity that produces a product for an outsider . . . beyond a ‘training exercise’” 
(Brown & Seidner, 1997, p. 300). Many of the products developed in capstone design 
are under the advisement or sponsorship of an outside client. For this study, the 
Capstone Design Expo (hereafter, design expo) judges serve as an outside client. These 
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professionals evaluate the products for the quality of the innovation, utility of the de-
vice, engineering analysis of the device and its properties, how well the proof of concept 
was constructed, and the ability of the team to communicate the purpose and use of 
their device.

Multidisciplinary Capstone Design
According to Leifer, “there is an increasing need for organizations to form joint design 
development teams that collaborate for the life of a project and then disperse. These teams 
need to quickly locate, evaluate and make effective use of the best resources available 
(tools, facilities, people)” (Brown & Seidner, 1997, p. 298). However, the general practice 
is to stratify senior design courses by discipline, which prevents a collaborative exchange 
of expertise, knowledge, and experience across domains. An MCD experience supports 
this sharing by placing students from different majors together in the problem-solving 
space – in this case, mechanical engineers (MEs) and biomedical engineers (BMEs). As 
in the field, the MCD design-and-build context occurs within a defined time frame and 
requires that experts from diverse fields communicate effectively across expert domains, 
engage in quick action, and efficiently allocate resources.

Bordogna, Fromm, and Edward (1993) suggest that the intellectual components of 
engineering should be connected holistically to avoid what they call “fractionated 
knowledge” that is not relevant in the real world. Multidisciplinary capstone design ad-
dresses this by providing students with an opportunity to integrate theory with practice 
within their knowledge domain and that of a teammate from another field. This is fur-
ther articulated by ABET’s recommendations to the engineering and engineering edu-
cation community. ABET states that “As we move into the 21st century, the need to 
cross and mesh disciplinary boundaries is increasingly evident because new knowledge 
is increasingly created at disciplinary interfaces” (ABET, 2001). The MCD model im-
plemented in this project was designed to mesh these boundaries while satisfying eight 
of ABET’s eleven student outcomes. Working toward a collaboratively constructed de-
sign project, students are afforded the opportunity to experience and demonstrate 
ABET’s criteria that engineering graduates can function on multidisciplinary teams; 
apply knowledge of mathematics, science, and engineering; design and conduct experi-
ments; analyze and interpret data; design systems, components, or processes to meet 
needs; identify, formulate, and solve engineering problems; understand professional and 
ethical responsibility; communicate effectively; and use the techniques, skills, and mod-
ern engineering tools necessary for engineering practice (ABET, 2011; Felder & Brent, 
2003). 

In a 2005 replication of a previous large-scale capstone design survey (see Todd, 
Magleby, Sorensen, Swan, & Anthony, 1995), Howe and Willbarger determined that “as 
was true in 1994, the vast majority of departments in 2005 still organized students around 
departmental teams” (Howe & Willbarger, 2006, p. 4). However, they interpreted the 
positive trend in interdepartmental teams, from 21% to 35%, as a positive sign that inter-
est was growing. One of the key findings in the first National Capstone Design Confer-
ence, the impetus behind the featured papers on capstone design in a special issue of Ad-
vances in Engineering Education, was that although “there is a movement toward greater 
use of multi-disciplined teams,” they are difficult to establish without “an overarching col-
lege wide structure in place to make it happen” (Zable, 2010, p. 3).
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The goal of this paper is to advance the current MCD literature, which tends to rely 
heavily on course evaluations and descriptions of implementations substantiated by stu-
dent satisfaction self-report surveys. Representative qualitative reports of MCD innova-
tions include those at Brigham Young University (Todd et al., 1993), Colorado School of 
Mines (Miller & Olds, 1994), Behrend College at Penn State University (Ford, Goo-
drich, & Weissbach, 2004), Howard University (Thigpen, Glakpe, Gomes, & McCloud, 
2004), University of Missouri-Rolla (Stone & Hubing, 2002), Harvey Mudd College 
(Bright & Philips, 1999), and Santa Clara University (Kitts & Quinn, 2004). Reviewing 
the literature of capstone design courses, Dutson, Todd, Magleby, & Sorensen (1997) 
state that “the literature is filled with positive comments from students, instructors, and 
industrial sponsors who have participated in capstone design courses,” with most partici-
pants reporting that they benefitted from it. They suggest that a good indicator of a suc-
cessful capstone design course is industry’s interest in graduates who have been through 
the course. Hence, we used job placement as an indicator of success for the MCD course 
reported here. 

MOTIVATION

This experiment was motivated by observations of the quality of some capstone design 
products, independent of student effort, commitment, and engagement. We suspected 
that naïvely articulated products reflected the students’ limited exposure to theory and ap-
plied skills outside of their own field of study. Specifically in the case of this study, medical 
devices were primitively constructed due to the limits of BME students’ mechanical, ma-
terials, and manufacturing experience. Similarly, the MEs failed to acknowledge physiol-
ogy and necessary government regulation in the development of their medical devices. For 
example, a BME team, sponsored and advised by a major trucking company, developed a 
headset for drivers that could monitor the brain’s beta-wave activity through a type of 
electroencephalogram, sounding an alarm to alert the driver to impending sleep. However, 
the BME team’s limited experience with materials and fabrication techniques resulted in 
a flimsy, primitive structural frame without the elaboration that would have been possible 
had they had access to the experience and skills of ME majors. At the same time, it is 
highly unlikely that the sponsor would have sought an ME team for the same project 
given the specialized knowledge of physiology required for success. We speculated that a 
multidisciplinary capstone course would enrich the experience for both sets of students as 
evidenced by the products they developed.

Because the primitive devices produced by the students appeared to be representations 
of the knowledge limitations of the discrete domains, we hypothesized that, by combining 
knowledge domains in an MCD course, improved student-designed products – as mea-
sured by the design expo performance, job placement, and grade point average (GPA) 
would provide us with evidence of the course’s effectiveness. Using a needs analysis ap-
proach (Karwowski, Soares, & Stanton, 2011) to focus on the requirements related to the 
goals and needs of the user, capstone design students work with a client-advisor to develop 
a product with real-world application. We, in turn, used that same needs analysis ap-
proach in designing this experiment: the user needs were defined as the experiences and 
skills students require to be successful collaborators and innovators in an increasingly mul-
tidisciplinary world. 
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METHODS

Design
For this comparative study, a single treatment was administered (an undergraduate 
capstone design course within the College of Engineering at Georgia Tech) with three 
conditions (BME only, ME only, and MCD) to address the research hypothesis that 
students who take an MCD course have better outcomes than monodisciplinary stu-
dents, as measured by independent evaluation from industrial professionals and job 
placement. Job placement and design expo score were used as indicators of success in 
the quantitative analysis of the effects. This analysis is performed using a generalized 
linear model (GLM) for the continuous variables (e.g., expo score), and a logistic re-
gression to explore the effects of binomial variables (e.g., job placement). 

Subjects
In the Fall 2010 semester, three versions of senior capstone design course were imple-
mented concurrently: a monodisciplinary mechanical engineering course with 114 stu-
dents (23 teams), a monodisciplinary biomedical engineering course with 23 students (5 
teams), and an interdisciplinary biomedical-mechanical engineering course with 31 stu-
dents (20 BME and 11 ME distributed among 5 multidisciplinary teams). 

Student teams were formed by self-selection within sections of the course. For the 
MCD teams, those BME projects identified by the instructors as requiring ME expertise 
were chosen for pairing with ME students who had indicated an interest in a medical de-
vice project. This was done after the BME students had completed a semester of analyz-
ing their project and solution possibilities in order to identify the utility of a multidisci-
plinary team. Sections each comprised approximately one-fifth of the course enrollment. 
Teams and projects were matched by posting all projects at the beginning of the semester 
and allowing teams to select their top three preferences among the industry sponsored 
projects. In cases where only one team most preferred one project, the match was made. 
When multiple teams chose the same project, multiple teams were matched to it if the 
sponsor agreed. If not, then best effort was made to offer the teams their second choice. 
Teams that were not interested in the industry projects or that did not get matched to an 
industry sponsor (rare) were required to conceive their own projects. 

BME and ME instructors recruited BME teams for participation in the MCD sec-
tion based on their project’s suitability for the skills of ME experts. MCD teams’ projects 
were chosen based not on the degree of complexity or popularity but on need for mechan-
ical analysis and design. While enrollment in capstone design is mandatory, enrollment in 
the interdisciplinary course section was voluntary for the ME students. BME MCD 
teams that had already begun planning their design during the first semester of their two-
semester capstone design coursework pitched their proposals to ME students, who then 
were given the opportunity to choose a project that resonated with their interests. Stu-
dents in all three conditions signed Institutional Review Board-approved consent forms 
to voluntarily participate in the research portion of the study. 

We surveyed the literature to assess other measurements of the quantitative effect of 
group diversity (e.g., gender, ethnicity, age, major, year, personality, GPA) on group per-
formance to help elucidate valid variables for modeling. Group diversity has varying ef-
fects on a group performance, including innovation, quality of ideas, and productivity. In a 
thorough review of the effects of diversity on performance, Carrillo and Leifer (2003) 
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concluded that the literature produced mixed results. For example, group diversity can re-
sult in more creative solutions (Bantel & Jackson, 1989), increased performance, and 
higher quality ideas in creative tasks, such as product development (McLeod & Lobel, 
1992; Neale, Northcraft, & Jehn, 1999). However, the overall effect on performance was 
found to be negative (Ancona & Caldwell, 1992; Williams & O’Reilly, 1998). Although 
the creativity of the problem solutions appears to be improved, the end result of those so-
lutions does not directly result in an overall positive performance. Ancona and Caldwell 
(1992) found scant evidence of a relationship between cohesiveness and performance 
within diverse groups. In contrast, Chatman, Polzer, Barsade, and Neale (1998) discov-
ered that increased diversity resulted in improved productivity. One study found that 
overall, group diversity does not positively affect performance (Williams & O’Reilly, 
1998). Carrillo’s and Leifer’s (2003) experiments at Stanford showed that in short projects 
(e.g., two weeks) high-diversity teams had the lowest average scores and were especially 
weak in design implementation, while in longer project (e.g., 30 weeks), the high-diversity 
teams improved markedly, yielded the highest average performance in four of five design 
assignments, and had the least variation in category performance. Other studies specific 
to engineering capstone curricula have yielded more anecdotal and qualitative results, pri-
marily describing the challenges and team dynamics associated with diverse team compo-
sition (Amon, Finger, Siewiorek, & Smailagic, 1995; Davis & Masten, 1996). These stud-
ies indicate that the team experience better prepared the students for professional practice 
(Neeley, Elzey, Bauer, & Marshall, 2004) because it taught them to work together to over-
come conflict and integrate opposing views (Amon et al., 1995; Davis & Masten, 1996). 
In view of the mixed results from the literature, this 16-week study – with its quantitative 
significance and its independent variable being diversity of student major – seems timely 
and useful.

We also reviewed the literature to determine what factors (e.g., gender, ethnicity, age, 
major, co-op participation, personality, and GPA) had the greatest influence on job place-
ment to help elucidate valid variables for modeling. Relevant factors to this study were 
GPA and major. Studies have consistently found that GPA is the strongest predictor of 
job placement and persistence in engineering (Albrecht, 1994; Jackson, Gardner, & Sulli-
van, 1993). To prevent GPA from being a confounding factor in this study, it was con-
trolled for when analyzing the effect of course version. According to the U.S. Bureau of 
Labor Statistics Occupational Outlook Handbook, 2011 job placement rates also vary signif-
icantly between engineering majors, which could also be a confounding factor for analysis. 
Thus, when performing the analyses below, major was included as a variable of interest 
and controlled for in all analyses. 

Procedure
Teams were presented with a problem from an external sponsor or advisor, such as a medi-
cal professional or an engineering company, or devised their own problem. Approximately 
one-third of the course projects were identified from the instructor’s correspondence with 
industry sponsors prior to the semester, although students did not have access to that in-
formation. These projects were posed as challenges faced by the sponsor that required the 
effort of a team of engineers over the course of a semester to produce a working physical 
prototype and report. The remaining projects were student teams’ own conception 
through observation or conversation with faculty, family, or coworkers. In the span of one 
15-week semester, all teams developed creative solutions to the problems, analyzed them, 
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and physically fabricated prototype solutions given a $500 reimbursable budget, under the 
advisement of six faculty and three graduate teaching assistants. In the case of the BME 
and multidisciplinary medical device designs, the Food and Drug Administration’s 510k 
regulatory report was also filed. At the end of the semester, several expositions featuring 
all 33 teams were held. The teams were judged at the expositions by faculty and external 
professionals to yield a single quantitative score from the following criteria: (1) innovation, 
(2) utility, (3) analysis, (4) proof of concept, and (5) communication skills. Each team was 
evaluated by five or six judges who gave scores of 1, 2, or 3 (best) in each of the five catego-
ries listed above. Students also received individual course grades for their written and oral 
reports, meeting contributions, and peer evaluations. 

To further explicate the types of problems, inventions, and teams comprising the 
capstone design course, two team projects are described: one monodisciplinary and 
one MCD. A monodisciplinary team of five MEs invented an automobile-powered 
water pump for a market in sub-Saharan Africa, where 41% of people lack easy access 
to water for farming and drinking (Figure 1). It works with any car and sets up in 90 
seconds. An MCD team of four BMEs and two MEs invented a medical device for 
cataract surgery, the second most common surgery in the U.S. (Figure 2). Their simple, 
handheld device performs a technique called capsulorhexis, removing the lens of the 
eye much more effectively than the average surgeon. Both teams demonstrated 

FIGURE 1. A five-student monodisciplinary team designed, analyzed, and fabricated an automobile-
powered water pump.
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creativity in their solutions, undertook numerous design and analysis cycles, consid-
ered parameters such as power, weight, cost, mechanical loading, and deformation, and 
produced fully functional prototypes. Both teams earned high grades in the course 
consistent with their GPAs, performed very well in the design expo (top 3 out of 33 
teams), and continued working on the projects after the course ended.

DATA AND ANALYTICAL METHODS

Tables 1a–c list the quantitative parameters that were collected and separates them by 
variable classification: cumulative GPA at graduation, expo score, major, course version, 
and job placement status after graduation (unemployed, employed in graduate school or 
engineering job, or other). Table 1a contains both GPA and expo score (continuous vari-
ables) information. The mean GPA was found to be 2.98 ±0.5 with skewness � 0.224 and 
kurtosis � −0.829, which are consistent with only slightly non-normally distributed data. 
The mean expo score was found to be 9.94 �1.09 with skewness � −0.116 and kurtosis 
� −0.384, which are consistent with slight non-normality. Both fall close enough to a 
normal distribution that they can be assessed using analyses that assume normal distribu-
tion of data. Both variables were also plotted against normal percentiles, and no data outli-
ers were seen (data not shown). Table 1b contains the variables major, course version, and 
job status. There were 168 total students: 43 BME and 125 ME. The coding of these vari-
ables is shown to denote a reference group, always denoted by the coding value of 0. The 
reference major was BME, and thus its value is shown as 0 in Table 1b. From this group of 
students, three capstone design course versions were taken: MCD, ME, and BME. The 
MCD group was analyzed as the reference course version. Finally, job status ( JS) was ob-
tained seven months after course completion for 122 of the students. The unemployed 

FIGURE 2. A six-student multidisciplinary team designed, analyzed, and fabricated a device to improve 
safety and quality of cataract surgery, performing a technique called capsulothexis. Their project won top 
honors at the design expo.
Top: schematic; bottom: in operation on an eyeball model.
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group was analyzed as the reference group. Forty-six students’ employment status was lost 
to follow-up. Table 1c further divides several of the variables defined in Tables 1a,b into 
binomial variables. In each case, the variables have been divided such that the group that is 
being analyzed is singled out from the rest of the population. For instance, the course ver-
sion is divided into two dummy variables CVME and CVBME. The MCD course version is 
the reference group, and thus its value is always 0, so that no dummy variable is needed to 
define this parameter. The variable GPA was also divided into three dummy variables 
GPALow , GPAMed , and GPAHigh . The reference group was any GPA �2.5. Again, because 
this is the reference group, its value is always 0, and thus there is no need to create a vari-
able for it. Finally, the student’s job status was redefined as the binomial variable JSBIN. 
The reference group was defined as the unemployed, and all other employment was con-
densed into a single value ( JS values 1 to 3 from Table 1b).

GPA was chosen as a variable of interest because it not only is a criterion considered by 
potential employers but also serves as a proxy for the intellectual ability and effort of the 
student. Thus, by controlling for GPA in the analysis, we tried to assure that the team and 

TABLE 1a
Analysis of Continuous
Variables Measured for Regression Analyses

GPA Expo score

Mean 2.98 9.94

Std. dev. 0.50 1.09

Min. 2.06 7.17

Max. 4.00 12.10

Skewness 0.22 –0.12

Kurtosis –0.83 –0.38

TABLE 1b
Analysis of Nominal Variables Measured and Coding 
Convention for Regression Analyses

Variable/Category Coding Sample size Percentage

Major
BME 0    43 25.6
ME 1 125 74.4

Course version
MCD 0    31 18.5
ME 1 114 67.9
BME 2    23 13.7

Job status
Unemployed 0    20 16.4
Engineering job 1    65 53.3
Other Job 2    15 12.3
Grad/med school 3    22 18.0

Job status missing � 46
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project selection process did not predetermine or highly influence the values of the depen-
dent variables. While not a perfect measure of a student’s drive to succeed in academia, 
controlling for GPA serves to mitigate the effect of student differences in ability and ef-
fort. Thus, all analyses that are performed control for the GPA of the student so that only 
students of approximately equal GPA are compared.

To interpret the data in the analysis, a generalized linear model (GLM) and logistic re-
gression were used. Briefly, a GLM is a form of linear regression that uses the linear model 
to relate to the response variable by a distribution function (a normal distribution in this 
study); it allows the magnitude of the variance of each measurement to be a function of its 
predicted value. This model also assumes homoscedasticity of the data and that sampling 
was done independently. To confirm homoscedasticity of the data, the residuals of each 
variable were plotted against the predicted value, and no trend was seen in the data (not 
shown). All of the information collected was done in a blind fashion by a third party (see 
Acknowledgements), and no value depended on any other. In the model, parameter coeffi-
cients were determined using a least squares regression algorithm. In order to assess the ef-
fect of single variables, our modeling efforts followed standard practice to create a reference 
group that has a value of 0 for all parameters. 

The logistic function is used to transform any binomial (0-1) variable that varies 
across a parameter(s) to a linear distribution that can vary from −∞ to +∞. The resulting 
transformed model looks similar to a simple linear regression model; however, the un-
derlying distribution is binomial, and the parameter coefficients must be calculated using 

TABLE 1c 
Analysis of Binomial Variables Measured and Coding Convention for Regression 
Analyses

Variable/Sub-class Category Coding Sample size Percentage

Course version

ME Not ME 0    54 32.1

ME ME 1 114 67.9

BME Not BME 0 145 86.3

BME BME 1    23 13.7

GPA

Low Not 2.5–3.0 0 110 65.5

Low 2.5–3.0 1    58 34.5

Med. Not 3.0–3.5 0 120 71.4

Med. 3.0–3.5 1    48 28.6

High �3.5 0 137 81.6

High 3.5–4.0 1    31 18.5

Job status

Unemployed 0    20 16.4

Employed* 1 102 83.6

Course version, GPA, and job status variables from Table 1b are divided into bino-
mial dummy variables.
Job status missing � 46
* A combined variable of all job statuses given the values 1–3 in Table 1b
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maximum likelihood estimates (MLE) instead of least squares regression. Logistic re-
gression assumes that all variables are independent and that they are not collinear, as they 
were thought to be in this study. Logistic regression has the added benefit of assessing 
odds of a given piece of data given the parameter value (i.e., the odds of a student who 
has a 3.5 GPA having a job versus a student who has a GPA of �2.5). The odds can be 
obtained by exponentiating the parameter value multiplied by its MLE. For this model, 
the reference group was a BME student who took the MCD course version, had a GPA 
of �2.5, and an expo score of 0. The expo score was normalized and then analyzed in 
several ways. First, each judge’s scores were normalized to the mean. The normalization 
was done by taking the total points for all teams that an individual judge evaluated and 
summing to obtain the total number of points given by the judge. This sum was then 
normalized by dividing by a factor, which is a total score of ten points per team (two 
points in each of the five categories) multiplied by the number of teams seen by the 
judge. The result of this calculation (the normalization factor) was then used to normal-
ize each judge’s score, which was done by multiplying the judge’s original score for the 
team by the calculated normalization factor. This procedure was performed for each 
judge.

The validity of this normalization was then tested by an ANOVA with Dunnett’s post 
test using the overall expo score mean and standard deviation as the control group with an 
� � 0.05. The results showed that the normalization was successful and that no judge’s 
score fell outside the 95% confidence interval.

The expo scores for the previous two semesters were compared to the semester ana-
lyzed in this paper in order to provide some measure of external validity and thereby en-
sure that the score of all expo judges was not skewed toward any particular factor or set of 
teams in the semester analyzed. This comparison was done using an ANOVA with 
Tukey’s post test. The mean and standard deviation of the score in each of the five catego-
ries assessed by the judges was determined for each of the semesters. An ANOVA was 
then performed, which showed that the scores were not significantly different between 
semesters in the innovation, utility, analysis, and communication skills categories. The 
proof-of-concept category was found to be significantly lower between the fall and spring 
semesters; however, the overall ANOVA for the proof-of-concept category was not sig-
nificant, which indicates that variability was high for this category and that with such a 
small sample size (three semesters) it is difficult to draw concrete significant association. 
A graph of these results and their standard deviations is given in Figure A1 (Appendix A), 
with further breakdown by team and overall score in Figure A2.

RESULTS

General Linear Modeling
A GLM analysis was performed to determine if expo score could be predicted by major, 
course version, and GPA. To do this, course version was divided into two dummy vari-
ables, as given in Table 1c, with the MCD group as the reference group. GPA was mod-
eled as a continuous variable, and major was coded as seen in Table 1a with BME as the 
reference group. Equation 1 shows the full model with expo score as a function of major, 
course version, and GPA. 

Expo score � �0 � �1 (Major) � �2 (CVME) � �3 (CVBME) � �4 (GPA)  (1)
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An overall analysis of variance (ANOVA) was performed on the model to deter-
mine its stability and to show significance of this model in interpreting the data. The 
model converged and had an F value of 8.64 corresponding to p � 0.0001. The data 
was then fit using least squares regression and the best-fit beta values as seen in Equa-
tion 2, where statistically significant variables and their coefficients are bolded.

Expo score � 10.25 – 0.041 (Major) � 1.182 (CVME) � 1.574 (CVBME) 
                     � 0.246 (GPA) (2) 

The parameter estimate, standard error, 95% confidence interval, chi-square value, and 
probability for each parameter estimate are given in Table B1 (Appendix B). The refer-
ence group for this model was a hypothetical BME student who took the MCD course 
version and had a GPA of 0.0. A negative parameter estimate means that a variable has a 
negative association with the outcome when compared to the reference group. Equation 2 
shows that major and both course versions correspond negatively to expo score while 
GPA had a positive association with expo score. However, the magnitude of the associa-
tion between the parameters and expo score is only statistically significant for the course 
version variables (bolded, � � 0.05). In other words, ME majors and GPA did not have a 
statistically increased or decreased association with expo scores (over BME majors), but 
the course version the students took did have a statistically significant association with 
expo score. Because the association between course version and expo score is negative and 
is statistically significant, both monodisciplinary course versions cause a statistically sig-
nificant decrease in expo score relative to the multidisciplinary group, even when compar-
ing students who had the same GPA and major. The magnitude of this difference is larger 
for BME students than ME students in monodisciplinary course versions, though not to 
a statistically greater amount. 

To assess whether the measured factors were valid for prediction of the expo score, an 
adjusted R2 value was calculated to be 0.2105. Discussion of this R2 and its relatively low 
value can be found in Appendix B and a more in-depth analysis of the coefficients seen in 
Equation 1 is given in Table B1. For this GLM model, GPA and major have no signifi-
cant association with expo score, which indicates that there was no significant bias in expo 
score toward students with higher or lower GPAs or from different majors. Because scor-
ing was done on a team basis and not by individual, the lack of significant GPA indicates 
that no significant bias in team composition, in terms of GPA, was present. To further 
confirm this association, Pearson correlation coefficients were calculated between all pre-
dictors, and no significant correlation between GPA and team or course version was 
found. This correlation analysis and its implications are further discussed in Appendix B 
and Table B2. 

Logistic Regression 
The logistic regression model attempts to determine if there was an association between 
the binomial job status (employed or not employed) and the predictor variables: major, 
course version of capstone design taken, GPA, and expo score. This modeling was per-
formed in order to tease out factors important to job status regardless of what kind of job 
was obtained (engineering, non-engineering, or graduate/medical school). Using the cod-
ing shown in Table 1c, course version was divided into two dummy variables with the 
multidisciplinary group as the reference group. Expo score was modeled as a continuous 
variable, and major was coded as seen in Table 1b with BME as the reference group. For 



 

Quantitative Analysis of a Multidisciplinary Capstone Design Course 643

this regression, GPA was divided into three dummy variables (shown in Table 1c) with a 
GPA of �2.5 as the reference group. GPA was made into a hierarchical variable to deter-
mine what level of GPA was necessary to increase the odds of employment; the new 
model is given in Equation 3, where the base individual is a BME major on a multidisci-
plinary team with a GPA of �2.5 and an expo score of 0. 

Logit(JSBIN)  � �0 � �1 (Major) � �2 (CVME) � �3 (CVBME) � �4 (GPALow) 
� �5 (GPAMed) � �6 (GPAHigh) � �7 (Expo score)  (3)

A likelihood ratio (LRT) and Wald 	2 test were performed to confirm that the 
global null hypothesis could be rejected. The LRT 	2 value was 25.863 with a p � 
0.0005 while the Wald 	2 value was 17.506 with a p � 0.0144. Again, � � 0.05 was 
the threshold for significance, and thus the null hypothesis (that none of the parame-
ters were able to predict job status) was rejected, and the model was further analyzed 
using maximum likelihood estimates. The results of this analysis are given in Table 2.

The BME course version had a significant negative association with having a job as 
compared with the MCD course version when controlling for all other parameters in the 
model. In other words, BME students who took the MCD course version had statistically 
higher odds of having a job than did those BME students who did not take the MCD 
course version when comparing students of identical major, GPA, and expo score. The 
odds ratio for a BME student to have a job who did not take the MCD course version 
versus a BME student who did was 0.050, or roughly 20 times lower than that of the 
MCD group.

The GPAMed parameter was positively associated with having a job, controlling for 
course version, major, and expo score. In other words, students with a GPA from 3.0 to 3.5 
had statistically higher odds of having a job than did those with a GPA of �2.5. The odds 
ratios for having a job at either the medium or high GPA level were 11.85 and 7.8 times 
higher, respectively, than for the reference group (GPA of �2.5), controlling for all other 
parameters in the model.

TABLE 2 
Maximum Likelihood Parameter Estimates of the Logistic Regression Model Proposed in Equation 3

Parameter Est.
Stand. 
error Wald 95% CL Wald 	2

Prob. 

 	 2

Odds 
Ratio

Odds ratio 
95% Wald CI

Intercept (ß0) 0.03 2.98 [−5.8,5.87]    0 0.99 − −

�1 (Major) −1.14 1.54 [−4.17, 1.88] 0.55 0.46   0.32 [0.02, 6.57]

�2 (CVME) 0.1 1.22 [−2.28, 2.48] 0.01 0.93   1.11 [0.10, 11.98]

�3 (CVBME)** −2.99 1.31 [−5.55, −0.44] 5.26 0.02   0.05 [0.004, 0.65]

�4 (GPALow) 0.38 0.71 [−1.01, 1.76] 0.28 0.59   1.46 [0.37, 5.80]

�5 (GPAMed)** 2.47 1.02 [0.48, 4.46] 5.92 0.02 11.85 [1.62, 86.77]

�6 (GPAHigh)* 2.06 1.17 [−0.24, 4.35] 3.07 0.08   7.81 [0.78, 77.71]

�7 (Expo score) 0.2 0.26 [−0.31, 0.72] 0.6 0.44   1.23 [0.73, 2.05]

** Bold fields represent parameter estimates with statistically significant values (� � 0.05)
*  Parameter estimates with statistically significant values (� � 0.1)
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Because the BME course version was significant, the question of which type of em-
ployment the students had higher odds of obtaining was of interest. To explore the effect 
of which type of employment were more likely, we constructed a multinomial logistic re-
gression: 

         Logit (JSEng), Logit (JSOther), or Logit (JSGrad) � �0 � �1 (Major) � �2 (CVME) 
                  � �3 (CVBME) � �4 (GPALow) � �5 (GPAMed) � �6 (GPAHigh) 
                   � �7 (Expo score)  (4)

For this model, the job status data were divided into the four strata seen in 
Table 1b. The base group for each stratum was considered the unemployed group. A lo-
gistic model was then designed for each of the employment strata (engineering job, non-
engineering job, and graduate/medical school), and the subsequent maximum likelihood 
estimates calculated for each of the betas (see Table 3). For this multinomial regression, 
the reference group for each stratum was a BME major who took the MCD course ver-
sion, had a GPA of �2.5, and had an expo score of 0.

The GPAMed parameter again had a statistically significant positive association with 
having an engineering job and acceptance to graduate/medical school (over the reference 
group) when comparing students within the same course version, major, and expo score. 
For employment in fields other than engineering and graduate/medical school (JSOther), 
GPA played a less significant role in determining employment status, but still the higher 
GPA strata did have an increased odds of employment over the reference group. Also of 
interest, is that for graduate/medical school, GPAHigh showed a statistically significant in-
crease in the odds of employment, though not statistically higher than for the GPAMed 
group. No inferences about students who went to graduate school and had a GPA from 
2.5 to 3.0 were made because all students whose employment status was obtained and 
who were going to graduate/medical school had a GPA 
 3.0. 

TABLE 3
Maximum Likelihood Parameter Estimates of the Multinomial Logistic Regression Model Proposed in 
Equation 4.

 
Intercept 

(�0)
�1

(Major)

�2
(CVME)

�3
(CVBME)

�4
(GPALow)

�5
(GPAMed)

�6
(GPAHigh)

�7
(Expo 
score)

Engineering job
Estimate −1.93 −0.79 0.26 −2.84 0.49 2.13 1.43 0.33

Prob. 0.55 0.61 0.83 0.04 0.50 0.04 0.23 0.24

Odds ratio 0.15 0.46 1.30 0.06 1.63 8.42 4.19 1.40

Other job         
Estimate 2.42 −2.14 −0.27 −3.06 −0.40 2.17 1.48 −0.10

Prob. 0.53 0.26 0.87 0.05 0.70 0.07 0.32 0.77

Odds ratio 11.24 0.12 0.76 0.05 0.67 8.76 4.38 0.90

Grad/medical school        
Estimate −9.37 −1.99 0.22 −4.19 na 11.94 12.08 0.14

Prob. 0.05 0.28 0.89 0.02 na �0.0001 �0.0001 0.74

Odds ratio 0.0001 0.14 1.24 0.02 na 153891 175606 1.15

Bold fields represent statistically significant factors (� � 0.05).
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The BME course version had a significant negative association with having any kind 
of job as compared to the MCD course version, controlling for all other parameters in the 
model. Therefore, BME students who took the MCD course version had statistically 
higher odds of having a job in any field than did those BME students who did not take 
the MCD course version, comparing students of identical major, GPA, and expo score. 
The odds ratio for a BME student to have a job who did not take the MCD course ver-
sion versus a BME student who did was between 0.019 and 0.046, averaging 30 times 
lower than that of the MCD group. To evaluate the goodness-of-fit of the logistic models, 
Hosmer and Lemeshow’s goodness-of-fit test and Nagelkerke’s pseudo R2 values were 
used. The results and description are given in Appendix C. In summary, the logistic re-
gression accounts for a significant portion of the likelihood of the measurements. 

DISCUSSION

Table 4 summarizes the key findings in this analysis of the effects of the multidisciplinary, 
engineering capstone design course. 

General Linear Modeling
The model showed that students who took the MCD course version had a statistically 
higher expo score than did students who took any other course version even when con-
trolling for major and GPA of the students. Multidisciplinary teams created a product 
that earned a higher expo score than monodisciplinary teams as judged by industry, 
medical, and academic professionals with no prior knowledge of their groups’ mono- or 
multidisciplinary composition. The average decrease in score was 10% to 15% for the 
students who did not take the MCD course version. Due to how the course versions 
were constructed, several factors that could play a role in this result were not analyzed in 
the models. 

First, the multidisciplinary teams had more students on each team. The MCD teams 
had six to eight members while typical teams in BME and ME had three to five members. 
This increase in team members might lead to more person hours spent on the project. 
Therefore, the MCD teams may have received higher scores because of the increased 
number of hours possibly committed to the project. Because no teams in the BME or ME 
course versions had seven or eight members, no clear quantitative comparison controlling 
for group number could be made between these two groups when modeling. However, 
interviews and surveys with the students showed that scheduling for such teams was 

TABLE 4 
Summarized Outcome of All Modeling

Employment

Course version Expo score Engineering Grad/med school Other

ME Lower Equal Equal Equal

BME Lower Lower Lower Lower

“Lower” denotes a statistically significant amount lower than the multidisciplinary 
students; while “equal” denotes a statistically equal score or odds to a multi-
disciplinary student.
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challenging and led to difficulties in meetings and getting everyone organized and work-
ing simultaneously. Furthermore, according to course instructors, teams of three or four 
members have historically scored higher than teams of five or six members in monodisci-
plinary capstone design courses. Interview data gathered from these teams in the qualita-
tive component of this study indicate that larger teams had more fragmentation and less 
clarity on individual assignments. Students perceived that this dissonance contributed to a 
lower quality product than the students had hoped. Thus, larger teams were not a clear 
asset to the teams but rather an organization obstacle to overcome. In future studies we 
hope to make a more direct comparison of multidisciplinary groups with team sizes iden-
tical to those of other course versions. 

Second, the MCD teams had a phased start as compared with the ME and BME 
course versions. To make MCD teams, ME students were added to the BME groups after 
the first semester of the BME course was completed. In contrast, the BME students had a 
two-semester course while the ME students took a one-semester course. Thus, compared 
with the other ME groups, the MCD teams had an extra semester to evaluate the prob-
lem and conceptualize designs. However, the MCD teams still did statistically better in 
the design expo than the BME teams who also had two semesters to complete their proj-
ect. The expo scores were not statistically different between the BME and ME teams. 
The BME students who took the MCD course version in their second semester were 
asked to go back to the problem definition and conceptual design phases with their newly 
expanded team. The new design concepts generated from this redesign phase were funda-
mentally different from those of the BME teams alone. Most of the relevant background 
information, design concept analysis, and research of the preliminary work had to be re-
done in the second semester for these MCD teams on the basis of these new design con-
cepts. Therefore, since BME teams that had two semesters to develop and produce their 
design received statistically similar scores to those of the single-semester ME teams and 
since the BME students in MCD teams were asked to redesign their product, the phased 
start was seen as a negligible advantage to the MCD teams.

Logistic Regression
Possibly, due to the voluntary nature of reporting job outcome, some bias was introduced 
in the job status data. Though not measurable or quantifiable, we can hypothesize two 
readily available skews to this information. First, students who were unemployed might 
be reluctant to report their job status, resulting in an underrepresentation of this cohort. 
On the other hand, students who had jobs or were in graduate school might be excited to 
report their success, resulting in a contrasting overrepresentation of this group. In this 
case, the skew would be toward the null (no difference in job outcome regardless of pa-
rameters), and any difference seen in analysis would only be made more significant if all 
data were reported. Alternatively, students without jobs have more free time to respond to 
university communication. In this case, the bias would be toward the unemployed group, 
and any difference seen in analysis would be less significant if all data were reported. Be-
cause these are unknowable, for the purposes of this paper, we treated the data as repre-
sentative of the population.

Both the logistic regression model and the multinomial model showed that GPA and 
the BME course version were significant factors in having a job. The significant role of 
GPA in increasing the odds of having a job makes intuitive sense because many recruiters 
require a minimum GPA (often 3.0) before an interview. Interestingly, students with the 



 

Quantitative Analysis of a Multidisciplinary Capstone Design Course 647

highest GPAs did not have statistically significant greater odds of obtaining a job than a 
person with a GPA of �2.5 in the model shown in Equation 3. According to the model, 
students with a GPA of 3.0 to 3.5 had higher odds of obtaining a job than did those with 
a GPA of 3.5 to 4.0. However, the sample size for the high-GPA students was lower than 
of the medium-GPA students (24 vs. 38), thus suggesting a lack of power in the analysis. 
Therefore, we performed a power analysis on the data and found that the study was un-
derpowered for the high-GPA group. In order to obtain adequate power for significance, 
29 students would need to have had a high GPA. Furthermore, when job status was di-
vided into the four strata seen in Table 1b, the distribution of students in the GPAHigh 
stratum was much higher in the graduate/medical school group than in other job catego-
ries. This unequal distribution of students could also bias the data toward the null (no dif-
ference in GPA).

The GPA data becomes more interesting when analyzing the results from the model 
in Equation 4. The highest GPA stratum played a significant role in students getting 
into graduate/medical school, and only for this group did having the highest GPA give 
an odds ratio higher than that of having a GPA of 3.0 to 3.5. Furthermore, GPA seemed 
not to play as significant a role in obtaining employment in fields other than engineering 
and graduate/medical school. This consequence also seems reasonable as jobs outside of 
these fields do not always require a GPA disclosure when hiring, which would reduce its 
importance. 

Both the logistic model and multinomial models show much higher odds of employ-
ment for BME students in MCD teams than for monodisciplinary teams. BME students 
who did not take the MCD course version had a 20 to 30 times lower odds of being em-
ployed than did BME students who took the MCD course version. This difference can-
not be attributed to GPA differences or major because these odds calculations controlled 
for GPA, expo score, and major. This number seems unreasonably high, and when exam-
ining the confidence interval in Table 2, the true value of the odds ratio could be as high as 
0.648. However, even at the highest odds estimate, this still gives MCD students an al-
most 1.55 times higher odds of having a job than do the non-MCD students. Again, this 
seems unusually high. Because all MCD teams participated in schoolwide invention 
competitions, the Capstone Design Expo and Georgia Tech’s Inventure Prize, we specu-
lated one cause of this high ratio might be publicity exposure afforded the MCD teams. 
In fact, one of the teams did very well in the competition and received funding to continue 
development of their product, and a press release was sent out highlighting the team’s de-
sign. Published in the region’s major newspaper (Markiewicz, 2011), the press release was 
also broadcast across many state television and radio news channels. The competition 
events also gave MCD teams opportunities to meet industry professionals.

The success of the teams in Georgia Tech’s Inventure Prize competition led two of 
them to form start-up companies with their product, so that of the five MCD teams, ap-
proximately 40%, were employed before graduation. The added exposure, networking, 
press, and jobs were created as a direct result of having an excellent product. Accordingly, 
we do not consider the factors above as completely independent influences on outcome. 
In any future studies, we anticipate that as the sampling population grows larger, the 40% 
employment rate prior to graduation will likely decrease, in which case MCD course-
work would show a more moderate effect on employment. However, regardless of the 
significance of employment outcome, the authors suggest that MCD design coursework 
is justified by its products being judged better by diverse professionals. 
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Finally, both the logistic and multinomial models showed that BME students were 
statistically less likely to have a job, while ME students who did not take a MCD capstone 
design course were not significantly affected. These different outcomes led us to wonder 
why there is a disparity in job status between the two majors. Because there were three 
times as many ME students as BME students, their employment ratios may have been 
less sensitive to the increase represented by the MCD teams’ high employment. Also, 
most ME jobs are not in the biomedical field, so we speculate that an ME student’s show-
ing a biomedical product for a senior design device would have less of an impact on a non-
medical employer than it would on one in a biomedical engineering field. This disparity 
suggests that these ME students, unless applying for jobs in a biomedical field, would 
have a minimal increase in job odds over their monodisciplinary counterpart. 

Overall Study
The factors that control a student’s ability to succeed in capstone design are not strictly 
quantitative. In that regard this study is limited. Capstone success is likely to be influenced 
by nonquantitative factors such as a student’s drive to create a physical product, off-the-
record experience, passion, and communication skills. These factors might lead the stu-
dent to pick a particular course version biasing team composition and outcomes. Future 
studies should determine quantitative metrics for these factors by surveying the students 
before and after capstone design courses and incorporating the results into the models 
above.

In the future, we recommend larger populations of each course version to get more ac-
curate estimates with smaller confidence intervals than those obtained in this study. Ex-
tensions of this study might combine multiple semesters or incorporate students from 
multiple institutions. Furthermore, identical class structures and team sizes would allevi-
ate potential biases introduced in this study. Finally, factors other than GPA, major, expo 
score, and course version would make these models more robust and perhaps increase the 
R2 value of the linear models. Some relevant factors we did not consider in these models, 
but which could affect employment or expo score, are the following: number and length of 
internships students have completed, laboratory or clinical research completed, connec-
tion of students to the company or institution that hired them, years in school, and student 
age. Students who have a confirmed job after graduation prior to the start of capstone de-
sign should also be excluded. Finally scaling this course structure to an entire college of 
engineering will require novel administrative, reward, and incentive structures for faculty, 
students, and sponsors.

CONCLUSIONS

While this initial investigation did not acquire and assess all the possible variables that 
could influence employment status or expo score, it is an initial step toward showing that 
MCD coursework is valuable in producing a team product and presentation that external 
industry professionals judge as having holistically better innovation, utility, analysis, proof 
of concept, and communication skills than those of their monodisciplinary counterparts. 
Our study also shows that students in MCD courses have, on average, a higher likelihood 
of being employed seven months after graduation. Extrapolating the results found here to 
other majors, we believe that with the incorporation of MCD design across all engineer-
ing majors, students will better prepare themselves for the qualities valued in professional 
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practice and be more likely to obtain professional employment. However, we recognize 
that while GPA and major have no significant associations with expo score (considering 
first the major as a differentiator), the intellectual distance between the domains of BME 
and ME may not be far enough to be significant. This separation could become signifi-
cant when combining more disparate fields, such as business or industrial design; this fac-
tor should be analyzed and controlled for in future studies.

A prevailing observation in the BME undergraduate community is that, while future 
job predictions are positive, current employers are uncertain what to do with BME gradu-
ates because the fairly new field is still evolving (Meijer, 2008, 2011). This uncertainty, 
coupled with the BME students’ lack of expertise in any specific engineering field, has led 
to tepid industrial response to hiring BME undergraduates. It is clear that due to the 
breadth of fields these students are asked to cover in their coursework and the multidisci-
plinary nature of the work that occurs in the BME field, an undergraduate cannot build 
adequate specificity in any particular field to completely address any one of the complex 
components associated with medical problems. Thus, these students may be best suited to 
coordinating with engineers who have expertise in more specific areas; yet it is rare that 
their curriculum supports this type of multidisciplinary coursework. 

To our knowledge, this is the first study to show a quantitative benefit to multidisci-
plinary work, controlling for multiple factors that could have confounded previous studies 
on similar topics. This benefit is highlighted in Table 4 where MCD students showed dis-
tinct improvements over their non-MCD counterparts in at least one outcome and, in the 
case of BME majors, in every outcome tested. The ability to compare students of equal 
GPA, major, and course version makes a stronger and more valid argument that favors en-
gineering institutions encouraging MCD course work. 
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APPENDIX A:  EXPOSITION SCORE ANALYSIS

The average expo score for three consecutive semesters for each category assessed by 
judges is shown in Figure A1. The averages and distributions of the scores for all teams for 
the three semesters are shown in Figure A2. 

APPENDIX B:  GENERAL LINEAR MODELING

The parameter estimates and probabilities shown in Table B1 and whose results can be 
seen in Equation 2 are calculated by keeping all other variables constant and only varying 
the parameter of interest. In Table B1 and B2 parameter estimates with statistically signif-
icant values are bolded and highlighted. To assess whether the measured factors of the 
general linear model were valid for prediction of the expo score an adjusted R2 value was 
calculated. The adjusted R2 for this model is 0.2105 which means that the model accounts 
for ~21% of the total variance seen in the data. This is a relatively low amount; however, 
when other factors that were available such as gender, stratifying the GPA (as seen in 
Table 1c), and years in college were added to the model the fit improved only slightly (adj. 
R2� 0.2415). The increase in variable number (100% increase) relative to gain in R2 was 
seen as relatively low and thus these factors were removed from the model. Not stratifying 
the GPA was further bolstered by GPA having no statistical significance in the model 
from Equation 1 as seen in Table B1. Several non-linear regression techniques were also 
attempted and no significant increase in R2 was seen for these techniques. 

FIGURE A1. Average expo score for three consecutive semesters for each category assessed by judges.  Re-
sults show that scores from each semester were not statistically different except for between spring and fall 
of 2011 (under proof of concept) where the fall semester was found to be statistically lower than the spring 
2011 score as judged by Tukey’s post test � �  0.01. 

* indicates statistical significance.
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To further confirm this association, Pearson correlation coefficients were calculated 
between all predictors. A low correlation (� � 0.01 �) was found between GPA and major 
and GPA and any course version. This indicates that students were not unequally distrib-
uted between major or course version in terms of GPA. Additionally, the Pearson correla-
tion coefficient was calculated between all predictors and expo score. Using an � � 0.05 
for significance, major and GPA were not found to be significantly correlated with expo 
score; while either the ME or BME course versions were negatively correlated to expo 
score to a statistically significant level. No correlation between GPA and expo score indi-
cates that teams were evenly distributed in terms of GPA and thus that no bias in team 
composition due to the project and team selection process was occurring, at least in terms 
of GPA. Results of this test are given Table B2.

FIGURE A2. Average overall team score (from all five categories) and associated standard deviation for fall 
2010, spring 2011, and fall 2011 design expos.
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APPENDIX C:  LOGISTIC REGRESSION 

When analyzing data with a logistic regression, an equivalent statistic to the R2 value 
used in linear modeling does not exist, which means that assessing the validity of the in-
dicator variables to predict the outcome in logistic regressions is not as straightforward as 
in linear regression. This inclarity is because indicator variable coefficients in logistic re-
gression are maximum likelihood estimates which are arrived at through an iterative 
computational process. They are not calculated to minimize variance, so correlation to 
goodness-of-fit does not apply. However, to evaluate the goodness-of-fit of logistic 
models, several strategies are commonly used. In this paper Hosmer and Lemeshow 
goodness-of-fit test and Nagelkerke’s pseudo R2 values were chosen. Both of these tests 
do not provide the precise measurement equivalent of an R2 but taken together can indi-
cate how good a model’s variables are at predicting the outcome. 

Hosmer and Lemshow’s goodness-of-fit test divides subjects into deciles based on 
predicted probabilities, then computes a chi-square from the observed versus expected 
frequencies. It tests the null hypothesis that there is no difference between the observed 
and predicted values of the response variable. Therefore, when the test is not significant 
one cannot reject the null hypothesis and thus one is saying that the model fits the data 
well. An additional parameter is necessary to assess whether the indicator variables tested 
are important for outcome prediction. To make this assessment, Nagelkerke’s R2 value can 
be used, which takes the squared ratio of the model with and without the indicator vari-
ables and normalizes by the maximum ratio possible. Nagelkerke’s R2 value is considered 
pseudo because it is on a similar scale with traditional R2s, ranging from 0 to 1 with higher 
values indicating better model fit; but it cannot be interpreted identically to typical R2 val-
ues because the indicator variables represent likelihood ratio optimizations and not raw 
data approximation. 

TABLE B1 
Regression Results for the Linear Model Proposed in Equation 1

Parameter Est. Stand. error Wald 95% CL Wald 	 2 Prob. 
 	 2

Intercept (�0) 10.25 0.50 [9.28, 11.23] 425.35 �0.0001

�1 (Major) –0.04 0.37 [−0.76, 0.68] 0.01 0.91

�2 (CVME)** –1.18 0.31 [−1.78, −0.58] 14.81 0.0001

�3 (CVBME)** −1.57 0.30 [−2.16, −0.99] 28.08 �0.0001

�4 (GPA) 0.25 0.15 [−0.05, 0.54] 2.65 0.10

** Bold fields represent parameter estimates with statistically significant values (� � 0.05) 

TABLE B2
Pearson Correlation Coefficients Between All Variables (N � 168)

Major CVME CVBME GPA

Expo score −0.11 −0.24 −0.19 0.12

Probability 0.16 0.002 0.01 0.12

Bold fields represent statistically significant factors (� � 0.05)
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The logistic regression from Equation 3 had a Hosmer and Lemeshow goodness-of-
fit test 	2 value of 4.396 with p � 0.733. Thus, the null hypothesis cannot be rejected, and 
the model can be considered to fit the data well. Nagelkerke’s R2 value was 0.317, which is 
relatively low, but signifies that the logistic regression can account for a significant portion 
of the likelihood of the measurements. 


