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Abstract

Serial section transmission electron microscopy (ssTEM) is the most promising tool for

investigating the three-dimensional anatomy of the brain with nanometer resolution. Yet

as the field progresses to larger volumes of brain tissue, new methods for high-yield, low-

cost, and high-throughput serial sectioning are required. Here, we introduce LASSO (Loop-

based Automated Serial Sectioning Operation), in which serial sections are processed in

“batches.” Batches are quantized groups of individual sections that, in LASSO, are cut with

a diamond knife, picked up from an attached waterboat, and placed onto microfabricated

TEM substrates using rapid, accurate, and repeatable robotic tools. Additionally, we intro-

duce mathematical models for ssTEM with respect to yield, throughput, and cost to access

ssTEM scalability. To validate the method experimentally, we processed 729 serial sections

of human brain tissue (~40 nm x 1 mm x 1 mm). Section yield was 727/729 (99.7%). Sec-

tions were placed accurately and repeatably (x-direction: -20 ± 110 μm (1 s.d.), y-direction:

60 ± 150 μm (1 s.d.)) with a mean cycle time of 43 s ± 12 s (1 s.d.). High-magnification (2.5

nm/px) TEM imaging was conducted to measure the image quality. We report no significant

distortion, information loss, or substrate-derived artifacts in the TEM images. Quantitatively,

the edge spread function across vesicle edges and image contrast were comparable, sug-

gesting that LASSO does not negatively affect image quality. In total, LASSO compares

favorably with traditional serial sectioning methods with respect to throughput, yield, and

cost for large-scale experiments, and represents a flexible, scalable, and accessible tech-

nology platform to enable the next generation of neuroanatomical studies.
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Introduction

Serial section transmission electron microscopy (ssTEM) is the most promising tool for inves-

tigating the three-dimensional structure of the brain with nanometer-scale resolution [1–3]. In

recent years, ssTEM studies have provided significant insight into the physiology and neuro-

anatomy of mammalian and non-mammalian nervous systems with resolution and scope pre-

viously not possible [4–6], (respectively, references I, L, M in Fig 1). From published ssTEM

literature, we observe a general trend of increasing neural tissue volume studied over time,

exemplifying the scientific interest in the field to study larger and larger volumes of neural tis-

sue, as shown in Fig 1. Yet, a significant challenge remains in the scalability of ssTEM. As the

volume of brain tissue to be studied grows larger, does ssTEM remain a viable technology in

terms of yield, cost, and throughput?

Currently, the ssTEM workflow is composed of five primary steps: (1) bulk tissue process-

ing, (2) serial sectioning, (3) post-staining, (4) TEM imaging, and (5) image segmentation. In

recent years, significant advances in bulk tissue processing, post-staining, TEM imaging, and

image segmentation have shown the potential scalability of ssTEM [5, 7–13]. In contrast, tradi-

tional techniques and methods for serial sectioning for ssTEM have remained unchanged for

nearly 60 years [14, 15]. A recent advancement in serial sectioning technology, called the Auto-

matic Tape-collecting Lathe Ultramicrotome (ATLUM), shows promise for the automation of

serial sectioning, but demonstration and characterization for neuroanatomical ssTEM studies

remains to be shown [16, 17]. Accordingly, advances in methods for serial sectioning will be

necessary for the scalability of ssTEM.

In traditional serial sectioning, an ultrathin (< 40 nm) brain slice (or “section”) is cut with

a diamond knife into an attached water reservoir, i.e., “waterboat” (see Fig 2A). Individual sec-

tions are typically ultrathin in order to have sufficient out-of-plane resolution during EM

tomography. Once cut, the section is suspended on and then transported (e.g., by manually

whisking the water’s surface with an eyelash) on the water’s surface to a suitable pickup loca-

tion [15]. Subsequently, the section is carefully picked up by hand (e.g., by using a loop end-

effector; see [18–20] for previous loop-based serial section pick-up methods) and placed onto

a TEM substrate (e.g., copper, plastic-coated slot-grid), paying close attention to align the sec-

tion with the substrate aperture (see [15] for further details on traditional serial sectioning

methodology.) Thus, for traditional serial sectioning, the manual pickup of sections must be

repeated for each section without error. From prior work, experienced investigators typically

experience 1–3% section loss; with regards to cost, each TEM grid costs ~40 cents; with regards

to throughput; each cycle of ultrathin sectioning—transporting, picking up, and placing the

section—takes approximately 2 min [4, 5, 13, 15]. While these metrics on a section-by-section

basis may seem reasonable, it is the multiplication (or “scaling”) of these values by tens of thou-

sands of serial sections that prohibits large ssTEM neuroanatomical studies.

In the field of industrial engineering, batch processing, i.e., the production of goods in

quantized groupings (or “batches”), is a common methodology for yield, cost, and throughput

optimization for scaling manufacturing processes [21–24]. First introduced by the Toyota

Motor Company in the late 1930’s to compete with continuous processing methods (e.g., the

assembly line), batch processing enables high-yield, low-cost, high-throughput production

[24]. We set out to explore whether batch processing may be an effective methodology for scal-

ing serial sectioning for large neuroanatomical ssTEM studies.

We introduce conceptually, experimentally, and mathematically an alternative method for

large-scale serial sectioning, termed Loop-based, Automated Serial Sectioning Operation

(LASSO). In our methodology, individual sections are picked up from the waterboat and

placed onto TEM substrates using robotic tools for accurate and repeatable, rapid serial
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sectioning. Batches of sections are placed onto custom microfabricated substrates, reducing

overall handling and imaging time of sections. In total, we present a flexible, scalable, and

accessible technology platform for serial sectioning to enable the next generation of large-scale

neuroanatomical ssTEM studies.

Fig 1. Volume of neural tissue in ssTEM studies versus publication year. Each data point represents one journal publication that used ssTEM for

neuroanatomical studies. We observe the general trend of increasing neural tissue volume studied over time. The largest neuroanatomical ssTEM study

(reference M Zheng, Z., et. al., 207) to date remains an order of magnitude below a cubic millimeter.

https://doi.org/10.1371/journal.pone.0206172.g001
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Materials and methods

In LASSO, sections are cut on a conventional ultramicrotome with a diamond knife into an

adjoining waterboat, as depicted in Fig 2B. From the waterboat, sections are picked up using a

loop end-effector, controlled by three orthogonal linear actuators. Held in place by water sur-

face tension forces within the loop (Fig 2B, inset, top right), the sections are placed onto a

microfabricated silicon/silicon nitride TEM substrate (Fig 2B, inset, bottom right). Each sub-

strate holds more than one section with each section having its own imaging aperture. A set of

substrates composes a “batch,” (e.g., 4 substrates = 1 batch, as shown in Fig 2B, inset, bottom

right). Consecutive sections are never placed on the same batch; therefore, the probability of

consecutive section loss is minimized.

Experiment methods

Experimentally, microfabricated substrates were manufactured using conventional semicon-

ductor processing techniques, outlined below in Fig 3. A detailed fabrication protocol is pro-

vided in the Supporting Information, see S1 Protocol. A single tissue block was manually

trimmed to a cross sectional of ~1 mm x ~1 mm and placed into an ultramicrotome (Leica

UC7). Four microfabricated substrates were placed on a hotplate (VWR), adjacent to the ultra-

microtome, comprising 160 imaging apertures. The hotplate was set to 95 ºC to enable rapid

(< 30 s) drying of sections once placed onto the substrates. The ultramicrotome was set at cut-

ting speed of 0.1 mm/s. Sections were transported away from the knife-edge via a puff of air,

delivered manually through an air needle placed adjacent to the waterboat.

A 3-axis robotic system (Zaber Technologies), positioned adjacent to the ultramicrotome,

was used to transport sections between the diamond knife water boat (Diatome) and a micro-

fabricated substrate, using a platinum-iridium wire loop (3 mm diameter) end-effector

Fig 2. Traditional serial sectioning (left) as compared to LASSO (right). (a). Sections are cut on an ultramicrotome using a diamond knife and slide into an

adjoining water-filled waterboat, where they float on the water surface. Using a TEM grid held by forceps, a skilled user picks up section(s) from the waterboat

onto a TEM substrate, e.g., grid (Fig 2A, inset). Scale bar: 10 mm. (b) For LASSO, sections are fabricated in an identical manner as in Fig 2A, using the same

ultramicrotome, diamond knife, and waterboat. From the waterboat, sections are picked up using a loop end-effector, actuated via a robotic system composed

of three orthogonal linear axes. Held in the loop end-effector by surface tensions forces (Fig 2B, inset, top right), the section is placed onto microfabricated

silicon nitride substrates (Fig 2B, inset, bottom right). Multiple sections are placed onto the same substrate, with each section having its own imaging aperture; a

set of substrates compose a “batch,” (e.g., 4 substrates = 1 batch, as shown in Fig 2B, inset, bottom right). Scale bar: 100 mm.

https://doi.org/10.1371/journal.pone.0206172.g002
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(TedPella) rigidly affixed to the terminal axis. Section pickup was conducted using manual

control of the actuator system via an Xbox controller while placement of the sections onto the

microfabricated substrates was automated, following a pre-specified array pattern matching

that of the microfabricated substrate apertures. Custom Python-based software was used to

interface with the Xbox controller and the actuator system.

After serial sectioning, sections were picked up onto the substrates using the loop end-effec-

tor and 3-axis robotic system, with no consecutive sections being placed on the same substrate.

A movie of the section pick up and placement process is provided in the Supporting Informa-

tion, see S1 Movie. Between each section, the ultramicrotome was manually paused to allow

for section pickup and placement; once pickup and placement were complete, the ultramicro-

tome sectioning was resumed. Section pickup and placement was conducted until all 160 aper-

tures were occupied with sections or until a 2-hour imposed time limit to prevent effects due

to water evaporation.

Video recording of serial section pickup and placement was conducted to analyze process-

ing throughput and section placement accuracy, repeatability, and yield. From these videos, a

MATLAB-script was used to automatically identify and compute each section centroid. Sec-

tions that had separated into two or more pieces (but were successfully placed onto the sub-

strate) were excluded from our accuracy and repeatability analysis to maintain a consistent

section centroid definition. Yet, these partial sections were picked up and placed successfully.

In determining yield, we defined section loss as sections lost due to broken substrate apertures,

due to failed section pickup (e.g., loop end-effector damages the section during pickup, or par-

tial sections were unrecoverable), due to failed section transport (e.g., surface tension within

loop end-effector breaks during actuator movement), or due to failed placement (i.e., section

is not released from the loop end-effector). Thus we define single section loss rate, p, as the

Fig 3. Overview of fabrication of silicon/silicon-nitride (Si/SiN) TEM substrates. Wafers are initially deposited with low-stress silicon nitride (100 nm-thick)

followed by photolithography, and plasma etching. In practice we fabricated eight substrates on one 100-mm diameter wafer. See Supplemental Information

for fabrication plan details.

https://doi.org/10.1371/journal.pone.0206172.g003
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probability of damaging or losing one section due to any of these occurrences. We note, in our

yield calculation, we include sections that were partially misplaced over the TEM substrate

imaging aperture but were successfully placed onto the substrate.

Substrates were imaged using a JEOL EX-II TEM with a camera array system (see [13] for

more information regarding the camera array system). An alternative, commercially available

loadlock (Voxa) was used to fixture and position the microfabricated substrates during imag-

ing (see [25] for further details regarding the custom loadlock.)

To compare the image quality of the microfabricated films (SiN) used in LASSO with con-

ventional TEM grids (Luxel), we used two standard metrics to quantify the detectability of

neuroanatomical structures (e.g., synaptic vesicles). First, the edge spread function (ESF) was

computed by manually annotating synaptic vesicles in ITK-Snap on four separate images (2

SiN, 2 Luxel), drawing a line from the vesicle exterior to the interior, and then measuring the

change in pixel intensities across the vesicle boundaries [26]. Using derivative-based change-

point detection, the change-points in the ESF were obtained and a line was fit to all points

between the identified change points. Thus, the slope of this line, i.e., the mean roll-off of the

ESF, provides a quantitative measure of the sharpness of edges for neuroanatomical structures

of interest in our images [27]. To quantify image contrast, the Michelson contrast was calcu-

lated for vesicle interior versus vesicle exterior points. Again, the vesicle interior and exterior

pixel intensities were obtained from manually annotated vesicles (ITK-Snap). Then, the mean

contrast value across all annotated vesicles was computed, giving a quantitative metric of the

detectability of neuroanatomical structures in our images.

Mathematical modeling

Yield modeling

As a statistical model for predicting yield, we let each section pickup and placement event be a

binomial random variable, where n is the number of sections to be processed and p be the

probability of failure, i.e., damaging or losing one section. To successfully reconstruct a cubic

millimeter of neural tissue with 40 nm-thick sections, 25,000 consecutive sections must be cut

and imaged with zero consecutive section loss. Sections must be 40 nm thick or less to resolve

distal neuronal processes that often are ~100 nm thick, thereby spatially sampling above the

Nyquist frequency [3]. From prior literature, we can expect a single-section loss rate lower

bound of 1% [4, 5, 13]. The probability of losing two consecutive sections then, assuming P(1

lost section) = p = .01, is

Pð2 consecutive lostÞ ¼ p � p ¼ :0001:

Assuming n = 25,000 and a binomial probability distribution, the probably of losing 1 or

more pairs of consecutive sections is

Pð1 or more consecutive pairs lostÞ ¼
Pn� 1

i¼1

n � 1

i

 !

ðp � pÞi ð1 � p � pÞn� 1� i
� 92%:

The yield, or probability of success assuming failure criteria described above, for an experi-

ment with 25,000 sections traditionally processed is thus 1–0.92 = 8%. Thus, with traditional

serial sectioning, large-scale neuroanatomical studies are expected to be impractical. For

LASSO, a “batch” of sections will comprise c�m sections, where m is the number of substrates

per batch and c is the number of sections per substrate. In total, there are k batches where

k ¼
n

c �m
ð1Þ
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and n is the total number of section to be processed. Let us assume the loss rate of a single sub-

strate is p’. This is likely an overestimate of the substrate loss rate, since as substrates become

larger and easier to handle, we expect fewer substrates to be lost. Within one batch, we will

mandate that no two consecutive sections be placed on the same substrate. Therefore, we must

lose two or more substrates to lose two consecutive sections. This probability, P, can be calcu-

lated as

P ¼ Pðlosing 2 or more substrates in 1 batchÞ ¼ 1 � ½ð1 � p0Þm þ
m

1

 !

ðp0Þ ð1 � p0Þm� 1
�:ð2Þ

This represents the probability of one failed batch. Furthermore, we can calculate the probabil-

ity of one or more failed batches out of the total number of batches, k, as

Pð1 or more failed batchesÞ ¼
Pk

j¼1

k

j

 !

ðPÞi ð1 � PÞk� j: ð3Þ

Thus, Eqs 1–3 compose a framework by which to optimize yield by modulating m, the number

of substrates per batch, and c, the number of sections per substrate.

Throughput modeling

The total time to collect neuroanatomical datasets can be analyzed on a section-by-section

basis. For traditional serial sectioning, the total time for data collection can be written as

Ttraditional ¼ ðtimaging þ tpickup; traditional þ tload time;traditionalÞ � n; ð4Þ

where timaging is the time to image one section, tpickup, manual is the time to manually pick up

and place one section onto a grid, tload time, traditional is the time to load one grid into the TEM,

and n is the total number of sections to be processed.

For LASSO, the total time for data collection can be written as

TLASSO ¼
tload time; LASSO

c �m
þ timaging þ tpickup; robotic

� �

� n ð5Þ

where tpickup, robotic is the time to robotically pick up and place one section onto a substrate,

tload time, LASSO is the time to load one substrate into the TEM.

Cost modeling

For large sections, each TEM grid typically holds one section. As a result, the total cost for

large-scale neuroanatomical datasets can be written as

Ctraditional ¼ n � cgrid ð6Þ

where cgrid is the cost of one grid. For LASSO, sections are placed onto microfabricated sub-

strates, which are manufactured on a wafer-by-wafer basis.

CLASSO ¼
n
s
� w ð7Þ

where s is the number of sections per wafer, and w is the cost of processing one wafer.
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Results and discussion

Modeling results

In developing a mathematical model to predict the likelihood of experiment success (or

“yield”) for a large-scale (~1 mm3) neuroanatomical study, we implemented a binomial proba-

bility-based model with parameters taken from previously published literature. Using Eqs 1–3,

we plot in Fig 4 the predicted yield for batch processing 25,000 serial sections, i.e., the likeli-

hood of zero consecutive section loss, as a function of c, the number of sections per substrate,

and m, the number of substrates per batch. We observe the highest yield is attained by mini-

mizing m while maximizing c (Fig 4, yellow regime). Practically, this corresponds to large EM

substrates that can each hold many sections. While this may maximize yield, this optimal solu-

tion would be difficult to implement since typical commercial TEMs are designed to hold one

grid (~3 mm diameter) with one section on it. Significant modification of a TEM would be

required to accept large (>> 3 mm diameter) substrates. Yet, TEM modification is not without

precedent, (see references [6] and [13]); thus, the greatest barrier to attaining this theoretical

optimum is likely cost. This represents one extreme of our model: a few substrates (m ~ 10),

each holding many sections (c ~ 103–104) maximizes the predicted yield. At the opposite

extreme, i.e., having many substrates per batch (m ~ 104) with a few sections per substrate (c ~

1), the model predicts the low yield. Intriguingly, this extreme is analogous to traditional serial

sectioning, where one section is placed onto its own grid. Thus, our model points towards the

theoretical low-yield associated with performing large-scale ssTEM studies via traditional

serial sectioning methods (Fig 4, dark blue regime). The step-like behavior of the plot is due to

the need for an integer number of batches. Ultimately, this model captures the spectrum on

which ssTEM methodologies lie (with current technologies existing only at the extremes),

accurately reflects their respective observed yields, and represents a scaffold for further yield

optimization.

Furthermore, in modeling ssTEM experiments, we present a mathematical equation that

captures the time required to complete a large-scale ssTEM experiment. As shown in Eq 4, in

using traditional serial sectioning methods, the total time for data collection scales linearly

with the total number of sections to be processed. In order to decrease the total time for data

collection, we can either decrease the section load time, imaging time, or pickup time. From

prior work, the imaging time can be decreased by implementing a camera array system (e.g.,

TEMCA [13]). The section pickup time, using traditional serial sectioning methods is slow (~2

min per section, [15]); therefore, in LASSO, by using robotic pickup we decrease the section

pickup time, thereby decreasing the total data collection time. We note that tload time, traditional

ffi tload time, LASSO, but expect tload time, LASSO to decrease with further multiplexing and auto-

mated machine vision algorithms. Additionally, by imaging sections in batches, we are able to

decrease the section load time by reducing the number required of TEM pump-down cycles

for substrate interchange; this is encapsulated in Eq 5 by increasing c and/or m. An optimal

solution for both yield and throughput may lie in having exactly two substrates, each holding

half of the total number of sections. In this case, significant cost would be required to create

custom tooling needed for implementation. Adapting technology developed by Hayworth, K.,

et. al., [16] to ssTEM may be a viable approach to implement this theoretical optimal solution.

In total, we find that traditional serial sectioning methods scale poorly with respect to experi-

ment throughput while LASSO, with batch processing and utilization of robotic tooling, can

increase experiment throughput.

Lastly, we present two equations to capture the cost associated specifically with the sub-

strates required for traditional serial sectioning methods versus that of batch processing. For

traditional serial sectioning, the total cost of substrates scales linearly with the number of

Neuroanatomy using LASSO
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sections (see Eq 6). On the other hand, for LASSO, in which sections are processed in batches,

we observe in Eq 7 that the cost per section is inversely related to the number of sections per

Fig 4. Predicted experiment yield for a batch process as a function of m, the number of substrates per batch (1<m< 100) and c, the number of sections

per substrate (0< c< 80). The upper bounds for c andm represent practical physical limits while the lower bounds represent minimum physical limits, i.e.,

for a batch process we mandate at least two substrates per batch with at least one section per substrate.

https://doi.org/10.1371/journal.pone.0206172.g004

Neuroanatomy using LASSO

PLOS ONE | https://doi.org/10.1371/journal.pone.0206172 October 23, 2018 9 / 16

https://doi.org/10.1371/journal.pone.0206172.g004
https://doi.org/10.1371/journal.pone.0206172


wafer, assuming a wafer-based microfabrication process. Thus, analogous to that of Moore’s

law, we predict the cost per section to decrease as the standard wafer size increases, eventually

to below the cost of a single grid [28]. In total, these equations demonstrate the feasibility of

implementation of LASSO with respect to cost.

In total, our models for yield, throughput, and cost represent a theoretical scaffold for

ssTEM experiment optimization. Furthermore as an experimental implementation of LASSO,

using Eqs 1–3 and setting m and c to be 4 and 40, respectively, we predict a ~91% yield, or

probability of success, for an ssTEM study with 25,000 sections—an order of magnitude

increase in predicted yield using traditional serial sectioning methods. Accordingly, in our

experiments, we implement batch processing with m and c to be 4 and 40 respectively.

Experiment results

We fabricated 26 individual silicon/silicon-nitride substrates. A photograph of four substrates

(one batch) is shown in Fig 5A. Each substrate contained forty 1.4 mm x 1.4 mm apertures

with pitch 1.9 mm in both the x- and y-direction, as shown in Fig 5B. We processed four

wafers and obtained an average yield of 81.25% (6.5/8 substrates) for each wafer. We note,

while only 23 of the 26 substrates were used in our experiment, the remaining 3 substrates

were of usable quality.

We picked up and placed 727 sections across 23 substrates, with a yield of 99.7% (727/729).

We find our yield to exceed that of prior work (p< .05), using the Fisher’s exact test, to com-

pare LASSO yield to traditional serial sectioning by Lee, W.A., et. al., (3649/3700 sections) [5].

We note that this comparison is difficult to make due to a variety of uncontrolled parameters

(e.g., section size, tissue preparation, sectioning conditions), but in attempting to minimize

these differences, we choose to compare to this particular work due to similar section cross-

sectional area, section thickness, and the use of mammalian cortical tissue processed for elec-

tron microscopy in a similar manner (see [5] for details). The two sections lost were due to

substrate aperture failure. To this end, patterning the thin-film with out-of-plane stiffening

features (e.g., ribs), may reduce aperture failures. Additionally, alternative aperture materials,

such as silicon dioxide or graphene, may further reduce substrate aperture failures. As the field

moves towards larger volumes of neural tissue, it is likely that a 1.4 mm x 1.4 mm would be

insufficient to encompass the entire section within the imaging aperture. Thus, with the flexi-

bility granted by microfabrication techniques—in particular photolithography—larger aper-

tures can be readily created.

Sparse TEM imaging of sections was conducted to verify image quality. A representative

transmission electron micrograph of a section placed on the microfabricated TEM substrate is

shown in Fig 5C. Qualitatively, we are able to discern cell membranes and identify individual

synaptic vesicles. An image sub-area is shown in Fig 5D, depicting manual annotation of one

vesicle using methods described previously. Comparing images obtained on SiN compared to

that of Luxel, we observe no visible difference in image quality. Furthermore, the mean slope

of the computed edge spread function (ESF) was -2.56 +/-1.07 (n = 60) for Luxel (Fig 5E, blue)

and -2.98 +/- 1.83 (n = 60) for SiN (Fig 5E, red), with idealized edges having infinite slope. The

contrast for the Luxel film was 0.35 +/- 0.17 (n = 462) and 0.30 +/-0.14 for SiN (n = 636). Our

analysis demonstrates that the image quality of the SiN film is comparable to Luxel—a conven-

tionally used TEM grid support film. Thus, LASSO does not adversely affect image quality.

Additionally, we observe a slightly larger slope in the SiN ESF, indicating sharper edges in the

images. Thus, SiN-based substrates may be a suitable substrate for automated segmentation

algorithms [29, 30]. While the Luxel support film does exhibit higher contrast, commonly used
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contrast enhancing methods (e.g., histogram equalization) could be applied to improve the

contrast for SiN substrates.

Fig 5. (a) Photograph of four microfabricated TEM substrates, each with forty 1.4 mm x 1.4 mm apertures (pitch: px = py = 1.9 mm) for TEM imaging. Each

aperture contains a 100 nm-thick silicon nitride support films. Scale bar: 10 mm. (b) Photograph of a sub-area of a substrate with sections being placed onto the

apertures using a loop end-effector. Scale bar: 1 mm. (c) Representative transmission electron micrograph of section sub-area on the microfabricated TEM

substrate. Scale bar: 1 μm. (d) Electron micrograph sub-area depicting labeled vesicle interior (red cross-hair), vesicle exterior (red triangle), and connecting line

(red) used to measure edge spread function. Scale bar: 10 nm (e) Mean edge spread function across manually annotated vesicle edges for images from sections

on SiN (red) (n = 60) and Luxel (blue) (n = 60). We observe no significant difference in the slope of the ESF, indicating comparable sharpness of edges and

image quality. (f) Using LASSO, scatter plot of section centroid positions with x- and y-centroid position distributions; plot extents correspond to imaging

aperture size. Centroids located within the outlined box (black dashed line) have their entire area contained within the imaging aperture (587/631 sections,

93%). (g) Histogram of single-section pickup and placement time (solid outline) and single-section pickup time, only (dashed outline).

https://doi.org/10.1371/journal.pone.0206172.g005
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Applying the criteria previously outlined, we analyzed the section placement accuracy and

repeatability for 631/729 sections and report accuracy and repeatability of -20 ± 110 μm (x-

axis) and 60 ± 150 μm (y-axis), as shown in Fig 5F. We find that 587/631 (93%) sections lie

completely within imaging aperture while the remaining 631–587 = 44 sections are partially

occluded from the imaging aperture, i.e., roughly 7% (44/631) sections lie outside of the imag-

ing aperture. While traditional definitions of section loss would consider these 44 sections to

be “lost,” we assert that this failure modality is easily remedied via fabrication of substrates

with larger imaging apertures. From sections analyzed, given the same accuracy and repeat-

ability, all 631 sections would lie within the 3 mm x 3 mm imaging aperture. We note the 96

sections excluded (due to their breaking into multiple pieces) from our accuracy and repeat-

ability analysis (727–631 = 96 sections) may have fragmented due to a variety of causes, but we

do not see this as a fundamental barrier for LASSO due to our ability to successfully pick up

and place these sections onto TEM substrates as well as developments in segmentation algo-

rithms to recombine fragmented sections in silico [11]. Further study may investigate potential

causes for section fragmentation to prevent partial section all together. Potential causes may

include loop geometry, hysteresis of the water with respect to the loop, embedding plastic

material properties, embedment protocol, or experiment section dry-down conditions.

We report an average cycle time of 43.5 s ± 11.7 s (Fig 5G, solid outline) and an average sec-

tion pickup time of 18.9 s ± 9.7 s (Fig 5G, dashed outline). As a first order approximation, we

observe a section dry-down time of 24.6 s, calculated as the average cycle time minus the aver-

age section pickup time. This is likely an over estimation since this value includes the time

required for travel to and from the waterboat. In comparing our average section pickup time

that of from prior work (~2 min/section [15]), we find that our methodology has decreased the

section pickup time by approximately a factor of five while removing the need for a human

user with expert dexterity to pick up serial sections. Additionally, as demonstrated in electro-

physiology [31], further automation of section pickup and multiplexing could lower the cycle

time even further; thus increasing experiment throughput. Use of machine vision algorithms

may accelerate the identification of section centroids while implementation of an automated

section transport mechanism may obviate the need for a manually actuated air needle. Auto-

mated transport of sections away from the knife-edge prior to section pickup may be accom-

plished via an automated pneumatic system, standing surface acoustic waves [32] or

quadrupolar capillary interactions [33].

LASSO, as previously described, is the composition of several independent technologies

that together create flexible, scalable, and accessible platform for large-scale ssTEM. Yet, each

technology on its own merits its own discussion. As a part of LASSO, we introduce batch pro-

cessing, an industrial engineering ideology commonplace in large-scale manufacturing set-

tings. While we demonstrate and characterize a batch processing scheme that utilizes robotic

tools and microfabricated substrates, these specifics components are not required to imple-

ment batch processing. Moreover, as shown from our modeling results, it is arrangement of

serial sections in quantized groupings in a non-consecutive order that enables higher yield.

This could be done whether using tape-based substrates [16], silicon wafer substrates [17], or

glass slides [34]. By distributing the risk of losing consecutive sections by physically placing

them on separate substrates, we maximize the overall experiment yield.

Furthermore, in our implementation of LASSO, we used silicon/silicon-nitride substrates.

In their current state, these substrates could be amenable to automated multi-parameter analy-

sis by combining ssTEM with other analysis methods such as electrophysiology [31], array

tomography [34, 35], and genetic analysis [36]. Alternatively, these substrates could used with

other imaging modalities, such as multi-beam scanning electron microscopy (SEM) [37], scan-

ning transmission electron microscopy (STEM) [38], or x-ray microscopy [39], to provide
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imaging at multiple resolutions. In this manner, coarse rapid imaging could be combined with

high-resolution TEM for morphological alignment. Moreover, further work could explore

augmentation of our substrates. A promising direction may be the incorporation of micro-

channels within the substrate [40] or as a separate PDMS device [41] to enable in situ staining.

Additionally, the substrates could be designed for cell-culture to enable on-chip live-cell imag-

ing/electrophysiology followed by live-cell EM imaging [42, 43]. While each of these are poten-

tial future directions, LASSO does not depend on the utilization of microfabricated substrates.

In our implementation, the substrates could be readily replaced with tape-based substrates, tra-

ditional grids, silicon wafers, or other substrates of choice.

While we demonstrate the ability to manipulate ultrathin sections, LASSO is likely compati-

ble with a variety of section thicknesses. Therefore, semi-thin sections (~100 nm) for light

microscopy or EM-based tilt tomography as well as thick sections (~10 μm) for focused ion

beam scanning electron microscopy (FIBSEM) could be collected and placed onto an appro-

priate substrate using LASSO.

While this study was limited to 729 sections, we do not expect fundamental barriers for

scaling this technology to 103 to 105 sections, given appropriately apportioned batches. While

other technologies may achieve high-yield and high-throughput serial sectioning (see [16,

17]), the accessibility of LASSO, due our use of commercially available cameras, linear actua-

tors, open-source, python-based control software, and standard microfabrication techniques,

is a favorable alternative for large-scale serial sectioning.

Conclusion

LASSO represents a flexible, scalable, and accessible technology platform to enable the next

generation of large-scale neuroanatomical ssTEM studies. From our modeling, we find that

LASSO exceeds the yield, the throughput, and potentially, the cost of traditional serial section-

ing methods. Moreover, implementing a batch size of four substrates, with each substrate hold-

ing forty sections, we predict an order of magnitude increase in yield. Using this prediction,

we microfabricated custom substrates with corresponding size and implemented LASSO to

quantify the yield and throughput of the methodology. We find our yield 727/729 (99.7%)

exceeds that of prior work (two-sided Fisher test, p = .05); sections were placed accurately and

repeatably (x-direction: -20 ± 110 μm (1 s.d.), y-direction: 60 ± 150 μm (1 s.d.)) within the

imaging aperture. Sparse TEM imaging of sections showed no significant distortion, high-fre-

quency information loss, or substrate-derived artifacts resulting from serial sectioning via

LASSO. Regarding throughput, we find our methodology decreased the section pickup time

by a factor of five while removing the need for a human user with expert dexterity to pickup

serial sections. (Mean cycle time: 43.5 s ± 11.7 s; mean section pickup time: 18.9 s ± 9.7 s). This

technology demonstrates a powerful tool for automating serial sectioning—a significant bottle-

neck for ssTEM neuroanatomical studies. Thus, we envisage LASSO will enable ssTEM physi-

ological and neuroanatomical studies that investigate neural tissue volumes of size previously

not possible, thereby bringing significant insight into the field of neuroscience.

Supporting information

S1 Protocol. Fabrication protocol for TEM substrates.

(PDF)

S1 Movie. Example of section pickup and placement process.
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