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Biosensors exploiting communication within genetically engineered bacteria are

becoming increasingly important for monitoring environmental changes. Currently,

there are a variety of mathematical models for understanding and predicting how

genetically engineered bacteria respond to molecular stimuli in these

environments, but as sensors have miniaturized towards microfluidics and are

subjected to complex time-varying inputs, the shortcomings of these models have

become apparent. The effects of microfluidic environments such as low oxygen

concentration, increased biofilm encapsulation, diffusion limited molecular

distribution, and higher population densities strongly affect rate constants for gene

expression not accounted for in previous models. We report a mathematical model

that accurately predicts the biological response of the autoinducer N-acyl

homoserine lactone-mediated green fluorescent protein expression in reporter

bacteria in microfluidic environments by accommodating these rate constants. This

generalized mass action model considers a chain of biomolecular events from input

autoinducer chemical to fluorescent protein expression through a series of six

chemical species. We have validated this model against experimental data from our

own apparatus as well as prior published experimental results. Results indicate

accurate prediction of dynamics (e.g., 14% peak time error from a pulse input) and

with reduced mean-squared error with pulse or step inputs for a range of

concentrations (10 lM–30 lM). This model can help advance the design of

genetically engineered bacteria sensors and molecular communication devices.
VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4884519]

I. INTRODUCTION

Using synthetic biology to genetically engineer bacteria that is responsive to molecular

cues has enabled a variety of sensing applications. For example, engineered bacteria have

been used as toxicology biosensors to detect the presence of pollutants including metals,1 ar-

senic pollution,2 and to monitor membrane biofouling.3 These sensors are typically housed in

flasks, wells, or agar plates,1–3 but miniaturization is becoming increasingly common and im-

portant because it enables one to minimize reagents and to have greater control over stimuli,

population size, density, flow rate, temperature, and other factors. As noted by van der Meer,

and Belkin, “owing to their small size, bacterial bioreporter cells are highly suitable for incor-

poration onto microengineered platforms, transforming such devices into whole-cell bio-

sensors.”4 Additionally polydimethylsiloxane (PDMS) is emerging as the material of choice

for the design and fabrication of three-dimensional microfluidic networks of bacterial-cell

arrays.4
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To understand and engineer bacteria for sensor applications, several groups have examined

the response of engineered bacteria to stimuli, either in bulk culture or in a microfluidic envi-

ronment.4 Whitaker et al.5 showed the effect of population density on the ability of bacteria to

respond in microliter-scale volume wells. Further, the effects of flow on reporter bacteria have

been examined in a microfluidic device.6 Delivering a chemical stimulus to engineered bacteria

in a microfluidic environment, while monitoring fluorescent response, was done previously by

Groisman et al.7 Communication between two bacterial populations over time has been exam-

ined through means of a micro-ratchet structure8 and self-regulating populations that act as

oscillators.9,10

A variety of models for chemical transduction that apply to genetically engineered bacteria

sensors have been posed that rely on a combination of the Hill equation,11 Michaelis–Menten

equation,12 and general mass action (GMA) equations.13 The Hill equation quantifies the degree

of co-operativity of the binding of a ligand (e.g., N-Acyl homoserine lactone (AHL)) to a re-

ceptor (e.g., LuxR). In particular, the Hill coefficient in the Hill equation describes the fraction

of the receptor saturated by ligand as a function of the ligand concentration. The

Michaelis–Menten equation is one of the best known models of enzyme kinetics that relates

reaction velocity to substrate concentration for a system where a substrate binds reversibly to

an enzyme, forming a complex. GMA equations describe the dynamics of chemical species

arising from reactions with kinetic rates. The rate of a chemical reaction is directly proportional

to the molecular concentrations of the reacting species. Thus, a series of mass balances consist-

ing of first-order differential equations can capture the dynamics between several chemical spe-

cies that ultimately activate production of fluorescence (e.g., green fluorescent protein (GFP)).

Leveau and Lindow14 made great strides towards modeling bacteria response by consider-

ing the activity of a promoter sequence as well as GFP maturation time and GFP degradation

using such methods as Michaelis–Menten and a system of ordinary differential equations simi-

lar to GMA. This model has been utilized by many15,16 for non-microfluidic environments.

Since Leveau and Lindow’s work, numerous attempts have been made to create a simplified

model for reporter bacteria utilizing ordinary differential equations, the Hill equation or

Michaelis–Menten equation. Previously, a series of ordinary differential equations was derived

for the quorum sensing signaling pathway in Vibrio fischeri or V. fischeri.17 Michaelis–Menten

have been used to model the quorum sensing regulatory system of the Aeromonas hydrophila.16

Another group looked to characterize a promoter with different number of DNA copies; with

induction curves fitted with the Hill equation.15 The use of this model is challenging because

the necessary Hill coefficient varies widely between reports,15,18 depends on specifics of the ex-

perimental system, and different forms of the Hill equation are often used as well. Both works

were done in non-microfluidic settings.

In a previous study, the response of reporter bacteria to AHL was examined in microfluidic

channels under flow and no-flow (quasi-static) conditions.6 The Hill equation was used to pre-

dict the change in fluorescence over time using the input AHL concentration. Although the

model included factors such as GFP degradation, the authors noted that “influences of a reduced

oxygen concentration due to respiration, which might affect both the maturation of GFP and

the cell physiology, were assumed to be negligible.” This assumption, together with the over

simplification of combining several chemical species and processes into a single equation, is

limiting. In fact, the microfluidic environment, with time-varying inputs, exacerbates some of

the shortcomings not only of the simplified models but also the more encompassing and general

Leveau and Lindow model. This can lead to a poor fit between model and experimental data in

microfluidic biological sensor literature.6

Microfluidic environments affect bacterial populations most importantly by limiting molec-

ular distribution to diffusion. Under shear stresses prevalent in microfluidic environments with

constant flow, biofilm formation is increased relative to wells or flasks with low shear stress

flow or no flow.19 Additionally Escherichia coli, or E. coli, commonly used for genetically

engineered sensors, increase biofilm production in stressful environments20 (i.e., low oxygen).

Biofilm material slows diffusion of small molecules21–23 such as oxygen and AHL. PDMS, a

silicone elastomer often used for manufacturing microfluidic biosensors, is permeable to
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oxygen, yet the oxygen concentration in a PDMS microfluidic biosensor can be considered dif-

fusion limited, in contrast with open wells or flasks.24 The concentration of oxygen in a PDMS

microfluidic biosensor is difficult to predict, but it is influenced by geometry, especially, thick-

ness to the external atmosphere, and the concentration of silicone elastomer to curing agent,

which controls stiffness. Ultimately, oxygen concentration to the bacterial populations is influ-

enced by biofilm, PDMS, atmospheric concentration, and oxygen dissolved in media. The

expression of over 200 genes in E. coli can be affected by oxygen concentration,25 and during

the maturation of GFP, from immature GFPi to mature GFPm, a high amount of oxygen is

needed.26 The oxidation processes has been quantified and found to be rate limiting27 and this

has been quantified.28

We present a model that accounts for diffusion-limiting microfluidic environmental effects

with experimental data collected from our microfluidic chambers, the design of which have

been described previously.29 The model utilizes a series of generalized mass action equations to

describe the change in the concentration of each chemical species. After comparing this model

and experiment, we apply the model to experimental data from Meyer et al.6 to show its broad

applicability.

II. METHODS

A. Bacteria

One of the common organisms used for biosensing is a genetically modified strain of

E. coli, which expresses genes from the quorum sensing, or autoinducer, system of V. fischeri.4

In V. fischeri, the lactone AHL reversibly binds to the regulatory LuxR protein. This complex

then binds to the promoter for the luxI gene, inducing transcription. In genetically modified E.
coli, the luxI promoter is engineered to control production of an unstable variant of GFP, thus,

causing the bacteria to emit green fluorescence in the presence of AHL. The E. coli bacteria do

not encode the genes to produce AHL, and thus act only as reporters.

To create a model for the sequence of biological processes, in which a population of genet-

ically engineered reporter bacteria emits fluorescence in response to AHL stimulus, we first dia-

grammed the sequence of events that occur. Figure 1 shows a block diagram of the processes

that occur in biosensing in E. coli with this LuxR system. Although this diagram is still a sim-

plification of the signaling pathway from the literature,30 it illustrates reactions and chemical

species not accounted for in previous modeling efforts and is generally applicable for both

macro- and microfluidic environments.

In this system, “external” AHLe diffuses through the biofilm material surrounding the bac-

teria and subsequently across the bacteria membrane, becoming “internal” AHLi at rate kc. A

constitutive promoter, Pon, drives the expression of the luxR gene that codes for the AHL recep-

tor protein, LuxR at rate kLc. AHLi and LuxR form a dimer complex (C1), which reversibly

binds to the luxI promoter sequence, PLux, forming complex C2, which induces transcription

and translation at rate ktr of an unstable, immature variant of GFPi. GFPi folds into a mature

fluorescent form GFPm. Both GFPi and GFPm can degrade at rates kGd (see Figure 1).

We have previously reported our experimental methods but briefly summarize them here.29

We used the microfluidic chip design of Danino et al.9 to study our genetically engineered bac-

teria biosensors. This microfluidic design comprises a simple chamber for the bacteria popula-

tion with an adjacent flow channel for delivery of both nutrients and chemical stimulus (AHL).

This microfluidic environment facilitates control of stimulus concentration, stimulus duration,

bacteria population size, temperature, flow rates, and measurement of response using fluores-

cence microscopy.

Standard microbiological techniques were used for culturing E. coli. All experiments were

performed in 2xYT lysogeny broth (LB) media.31 E. coli strain DH5a was used for all cloning.

Reporter bacteria were derived from the fully sequenced K-12 strain MG1655.32 To generate

the reporter plasmid, Biobrick BBa T9002 (partsregistry.org) was modified using PCR based

methods to append an ssrA-degradation tag (ANDENYALAA) to the C-terminus of GFP.33

The resulting plasmid was transformed into MG1655 to create the reporter bacteria. Thus, the
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E. coli strain MG1655 exhibits fluorescence upon receiving a specific AHL signal molecule,

C6-HSL, as depicted in Figure 1.

B. Experimental setup

To fabricate the microfluidic devices, we utilized standard soft lithography34 resulting in a

PDMS device bonded to a glass coverslip. A PDMS central flow channel (250 lm wide� 10 lm

high) is in direct fluidic contact with an adjacent PDMS chamber containing bacteria

(100 lm� 100 lm� 5 lm high). Fluorescence was imaged on an upright microscope (Nikon TE

2000), through the glass coverslip with stage heated to 30 �C.

Bacteria were initially injected into the device through an inlet port using a syringe (BD,

Luer-Lok), filling the chip entirely. Excess bacteria were flushed from the channel, leaving bac-

terial populations in the chambers. Bacteria were allowed to populate the chambers for 24 h to

reach capacity (�105), while the chamber was supplied with LB at 100 ll/h.

Once the bacteria had filled the chamber and biofilm had formed protecting the colony

from shear stress, flow rate was increased to 360 ll/h. One syringe was used for LB

(at 350 ll/h), while the second (10 ll/h) was used to deliver varying concentrations of AHL.

A range of AHL concentrations exceeding prior published reports5–7 was used to produce fluo-

rescent responses up to saturation (0–30 lM). An “AHL pulse” is the duration and concentra-

tion over which this AHL was delivered to the bacteria chamber. Pulse durations of 50 min

which we have previously optimized29 were used. Fluorescent images were captured once in

every 10 min and post-processed using MATLAB. The intensity of the pixels within the bacte-

ria chamber was averaged and the background fluorescence was subtracted, yielding relative

fluorescence (arbitrary units (AU)).

Three relative fluorescence levels are notable: a “threshold fluorescence” at 5% of peak,

95% of peak, and peak. A variety of durations were determined from the fluorescence responses

measured and modeled. “Response delay” is defined as the time between the start of the AHL

pulse and the time of threshold fluorescence. “Ramp-up time” is defined as the time between

FIG. 1. (a) The genetically engineered E. coli strain MG1655 has a LuxR signaling pathway that receives external AHL

(AHLe) and produces mature GFP (GFPm). (b) In this signaling pathway, we illustrate the most significant biological mole-

cules (e.g., AHLi and LuxR), complexes (denoted as Cn, where n is an integer), and gene sequences (e.g., promoter PLux)

with rates, ki.
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the threshold fluorescence and 95% of peak. “Peak time” is defined as the time between the

start of the AHL pulse and the time of peak fluorescence. “Response duration” is the duration

that the response is above the threshold fluorescence. “Ramp-down time” is the time between

the 95% of peak after achieving peak and threshold fluorescence. We computed the absolute

value of the difference between measured and modeled durations at each concentration and

averaged them. To ensure that outlier responses did not skew our data, we excluded any

responses whose maximum amplitude were more than two standard deviations from the

average. Experimental duration for setup, growth, and one cycle of stimulation and response

averaged approximately two days.

C. Modeling

Our modeling method utilizes generalized mass action equations, GMA, based upon the

chemical pathway shown in Figure 1(b). Transcription and translation were represented as a sin-

gle species to simplify the model, while other biological processes affected by the microfluidic

environment, such as diffusion of signal molecule AHL and maturation of GFP, were kept ac-

cessible. The general form of a GMA system of ordinary differential equations is given by

_Xi ¼
X

6ki

Y
Xj

� �
; (1)

where _Xi is the rate of change of a concentration of molecular species i, ki is the corresponding

rate constant, and Xj is a concentration of molecular species j. For the processes described in

Figure 1, the following equations were determined to model the bacteria response

dAHLi

dt
¼ kc AHLe � AHLið Þ � k1AHL2

i LuxR2 þ k1C1; (2)

dC1

dt
¼ k1AHL2

i LuxR2 � k1C1 þ k2C1PLux; (3)

dC2

dt
¼ k2C1PLux � k2C2 � ktrC2; (4)

dLuxR

dt
¼ kLc � 2C1 � 2C2; (5)

dGFPi

dt
¼ ktrC2 � kGmGFPi � kGdGFPi; and (6)

dGFPm

dt
¼ kGmGi � kGdGFPm: (7)

AHLi and AHLe are the concentrations of internal and external AHL, respectively; LuxR is the

population of free LuxR; C1 is the LuxR-AHL dimer; C2 is the complex involving the dimer

bound to the promoter sequence; GFPi represents “immature” GFP, in its inactive,

non-fluorescent form; and GFPm represents mature, fully fluorescent GFP.

The rate constant kc governs mass transfer through the bacteria membrane and biofilm.

Nilsson et al.35 previously determined this rate of diffusion for membrane and biofilm sepa-

rately; k1 governs the association and dissociation of C1; k2 governs the association and dissoci-

ation of C2; kLc represents the constitutive rate of production of LuxR; ktr is the rate of protein

production of GFP, encompassing transcription and translation; kGm governs GFP maturation;

and kGd governs the rate of GFP degradation. Note that kGd is the same for both Gi and Gm, as

GFP degradation proteases do not differentiate between the species. The vector k represents the

set of rate constants k¼ [kc k1 k2 kLc ktr kGm kGd].

This system of ordinary differential equations was solved numerically in MATLAB using

Euler’s method. The set of initial values for the rate constants was based on literature as shown
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in Table I. Rate constants, k1, k2, and kLc were held fixed because they are processes that are

independent of environment (e.g., oxygen concentration, biofilm) and thus literature values

were assumed accurate, while kc, ktr, kGm, and kGd were allowed to vary by up to one order of

magnitude from literature values. To determine the quality of fit for each vector k, the sum of

square errors (SSE) was calculated between the numerically approximated result and the experi-

mentally measured fluorescence. SSE was minimized by iteratively adjusting k with an

interior-point algorithm.36 After a set of rate constants that minimized SSE was found, their

sensitivity was analyzed. Rate constants ki were individually varied in increments of 6100%,

610%, 61%, 60.1%, while holding the others constant to create a vector kn for which a new

SSE was calculated. The difference in error between k and kn was then plotted to determine

the sensitivity of each rate constant. This showed which variables have the greatest influence

on the model and therefore must be considered when adjusting for the microfluidic

environment.

III. RESULTS AND DISCUSSION

Figure 2 shows the relative fluorescence response of the bacterial populations in the

microfluidic chambers to AHL stimuli of varying concentrations at constant 50 min duration.

Figure 2 inset shows the amplitude of the relative fluorescence response to a 50 min pulse of

AHL at concentrations from 10 lM to 30 lM (though 10 lM AHL did not elicit a response

TABLE I. Published and best-fit modeled rate constants for the metabolic processes for AHL-mediated GFP expression in

reporter bacteria in a microfluidic environment. Sources for published bulk (non-microfludic) rates are noted and whether

these published values were adjusted in our model to accommodate for the changes due to the microfluidic environment.

Rate constant Rate description Published bulk rate (h�1) Best-fit microfluidic rate (h�1) Adjusted Source(s)

kc AHL diffusion 3600 254 Yes 35

k1 C1 formation/dissociation 60 60 No 17

k2 C2 formation/dissociation 600 600 No 17

kLc LuxR production 1200 1200 No 39

ktr Protein production 150 1334 Yes 17

kGm GFP maturation 3.6 1.8 Yes 17

kGd GFP degradation 4.15 39 Yes 18

FIG. 2. Modeled response (lines) overlaid with measured experimental data for the linear regime of AHL concentrations.

All used a 50 min pulse of AHL (indicated by shaded area) and varying concentrations (inset). Inset shows peak amplitude

of the averaged fluorescence response as a function of AHL concentration with standard deviation and number of trials.
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above the noise threshold (signal-to-noise ration greater than five29) and 30 lM approaches satu-

ration). The relative fluorescence response data in Figure 2 is averaged across at least five trials

at each concentration. For each concentration, experimentally and modeled, we determined

threshold fluorescence, 95% of peak fluorescence, peak fluorescence, response delay, ramp-up

time, response duration, and ramp-down time. Peak time averages 124.9 min for this range of

concentrations. We measured an average absolute difference between the modeled and meas-

ured peak times for all concentrations as 17.1 min, or 14% error. Individually, peak time aver-

ages (and absolute differences between modeled and measured) were as follows: 79.8 min

(22.6 min), or 28%, for 15 lM; 109.9 min (0.1 min), or 0%, for 20 lM; 170.0 min (32.8 min), or

19%, for 25 lM; and 140.0 min (12.9 min), or 9%, for 30 lM. To our knowledge, no other

reported model for genetically engineered bacteria has the capability of predicting response

peak time for time-varying stimuli. This feature of our model is important for applications in

biosensing because the delay between stimulus and peak critically informs stimulus onset time.

Applications of engineered bacteria also involve communication networks,29 in which the

response delay, ramp-up time, response duration, and ramp-down time are important for data

rate determination. Across all concentrations, we measured average (and absolute difference

between modeled and measured) values as the following: response delay¼ 34.3 min (17.6 min),

ramp-up time¼ 77.5 min (15.2 min), response duration¼ 344.5 min (114.5 min), and ramp-down

times¼ 241.4 min (95.4 min). Corresponding errors range from 20% to 52%. These errors are

large, but represent the first modeling effort to date at capturing such dynamics of a bacterial

population in a microfluidic environment. Communication schemes are being developed29,37,38

that accommodate these errors, while further efforts are underway to improve repeatability (see

inset) and modeling accuracy. Experimental data collection are painstaking, and thus this data

represent a sampling of the linear regime over which this bacterial system operates.

Parameter sensitivity analysis was conducted to determine the rate constants with the great-

est effect on the model fit. Rate constants of high sensitivity produced divergent SSE values.

The GMA model had the highest sensitivity to the rate parameter for GFP maturation, kGm.

This shows the importance of adjusting this term to account for changes in the environment.

Critically, during maturation of GFP, from immature GFPi to mature GFPm, a high amount of

oxygen is needed26 and thus this term is very sensitive to the microfluidic environment.

For the constant flow rate in all experiments, shear stress is constant, thus biofilm thickness

is constant, and thus oxygen diffusion rate is constant. We verified that by lowering the AHL

diffusion rate, kc, the modeled bacterial response was slowed as expected.

Using parameter estimation, rate constants matching the kinetics of our system were deter-

mined, as shown in Table I (and used to generate the models of Figure 2). As previously men-

tioned, rate constants, k1, k2, and kLc are constant regardless of environmental factors (e.g., dif-

fusion rate and oxygen concentration). AHL diffusion rate, kc, was slowed from 3600 h�1 to

254 h�1, a 93% change. This change accommodates dramatically slowed diffusion through the

biofilm in addition to the bacteria membrane.

The GFP maturation rate, kGm, was decreased from 3.6 h�1 to 1.8 h�1, a 50% change. This

change has been suggested qualitatively in literature,26 but has not heretofore been quantified

for a microfluidic environment. Constant kGm is rate-limiting,27 and our analysis confirms its

sensitivity. Although it is not clear how the microfluidic environment can affect protein produc-

tion rate (ktr) and GFP degradation (kGd) rate, we note an increase in both in our model.

Specifically, ktr was found to increase by from 150 h�1 to 1334 h�1. Some literature suggests

that gene expression (e.g., ktr) in E. coli can be affected by oxygen concentration,25 but this is

not well understood and indicates an area of future study. In our model, rate constant kGd was

found to increase by nearly 10� over published values.18 GFP degradation is not commonly

studied since most prior work focuses on constant rather than time-varying inputs. Some have

assumed changes in kGd are negligible,6 and some have ignored this parameter altogether,5

while we report here that it is critical and varies between the macro- and micro- environment.

The generalizability of this model to other microfluidic experiments with genetically engi-

neered bacteria can be seen by examining the work done by Meyer et al.6 In their study, a sim-

ilar microfluidic environment was used to predict relative fluorescence of GFP by Pseudomonas
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pupida IsoF biosensor strain in response to several external AHL concentrations, utilizing the

Hill equation. To explore if our model was relevant to Meyer’s data, we performed the follow-

ing procedure. The published bulk rate values cited by Meyer were used to constrain our pa-

rameter estimation (see Meyer et al.6 Table I). As before, rate constants k1, k2, and kLc were

fixed, while kc, ktr, kGm, and kGd were allowed to vary by up to one order of magnitude from

initial values with parameter estimation using the same Eqs. (2)–(7) and again minimizing SSE

by iteratively adjusting k with an interior-point algorithm.

In Figure 3, we present a comparison of Meyer’s model to our GMA model. Meyer

acknowledged that their model did not fully describe the shape of the kinetics for this bacteria

population.6 As shown in Figure 3, our model better captures the shape of the response at later

times by accommodating rate constants that capture reduced oxygen concentration. Both the

Hill model and our generalized mass action model are first order responses to Meyer’s step

input, while the measured response exhibits second order dynamics. The Hill model better cap-

tures early dynamics (e.g., 0–240 min), while the error over the entire time period is greatly

improved with our model. The models were quantitatively compared by calculating mean

squared error (MSE) between each model fit and the data from Meyer. The MSE for the Meyer

model fit was 1.62� 106 AU, where our GMA model MSE was 1.28� 104 AU, a two order of

magnitude improvement.

We also explored the effect of different chamber widths (100 lm, 150 lm, 200 lm).

Bacteria were allowed to populate the chambers for 24 h to reach capacity while the chambers

were supplied with LB at 100 ll/h as before. Pulse durations of 50 min at 10 lM were used to

elicit fluorescent responses. Ten chambers of each size were measured. A student t-test and

Bayesian statistical methods were used to compare them. We found no statistical differences

between the different sized chambers having equal density of bacteria.

Additionally, we also explored whether AHL degradation, due to bacteria consumption, should

be included in the model. We found this effect was negligible, effectively zero, relative to the AHL

mass transfer by diffusion through the bacteria membrane and biofilm (rate constant kc).

We considered whether our results could be confounded by the temporal and spatial AHL

gradients in the chamber. Both COMSOL Multiphysics modeling and experimental testing with

Alexafluor 488-labeled BSA were used to verify that the time for the AHL to reach steady-state

in the chamber was less than 3 s (at identical flow rate and temperature). At steady-state, the

spatial concentration gradient across the chamber was less than 1%. Thus, both the temporal

FIG. 3. Data (circles) and model (solid line) reproduced by permission from A. Meyer et al., “Dynamics of AHL mediated

quorum sensing under flow and non-flow conditions,” Phys. Biol. 9(2), 026007 (2012). Copyright 2012 IOP Publishing, Ltd.

The generalized mass action model fit (dashed line) has an improved mean squared error over the duration of the experiment.
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and spatial gradients are negligible relative to the bacteria fluorescent response. Similarly, the

bacterial fluorescence response exhibited a spatial gradient in the chamber, which we measured

by comparing the intensity of chamber sub-sections comprising of 50 000 bacteria. We found

that the total intensity variation across the chamber to be negligibly less than 1%.

IV. CONCLUSION

Using a series of generalized mass action equations, we created a model that captures the

dynamics of autoinducer-mediated bacterial gene expression, specifically AHL-mediated GFP

expression, in reporter bacteria in a microfluidic environment. We subsequently fit that model

to experimental data from both our laboratory and that of Meyer et al.6 The model accurately

captures the response peak time, with 14% error, and somewhat captures the response delay,

ramp-up time, response duration, and ramp-down time for time-varying inputs across a range of

input concentrations. The model is a substantial improvement, as measured by mean squared

error, over previously reported models for time-constant inputs in microfluidic environments.

Four of the seven rate constants involved in metabolic processes for AHL-mediated GFP

expression in reporter bacteria were found to vary between the macro-environment and the

micro-environment explored in this work. By relaxing assumptions made in prior modeling

efforts, we were able to capture AHL diffusion rate changes, GFP transcription and translation

rate changes, GFP maturation rate changes, and GFP degradation rate changes. These rates

changed due to increased biofilm formation in the microfluidic environment, which resulted in

changes in oxygen and AHL concentration from what would be expected in bulk conditions.

Most sensitively, GFP maturation is a sensitive, rate-limiting step, and this rate is greatly

affected by oxygen content.

This model is versatile: applicable to microfluidic or traditional macro-environments; it can

be used with time varying (pulse) or constant (step) inputs. This model can serve as a valuable

tool in understanding genetically engineered bacteria and improving biosensor design capabil-

ities, opening the door for sensors that adapt to environmental dynamics and communicate with

each other.
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