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SUMMARY

The ability to rapidly, sensitively, and accurately detect the presence of a pathogen

is a vital capability for first responders in the assessment and treatment of scenarios

such as disease outbreak and bioterrorism. Nucleic acid tests such as the polymerase

chain reaction (PCR) are supplanting traditional techniques due to the improved

speed, specificity, sensitivity, and simplicity. Still, amplification by PCR is often

the bottleneck when processing genetic samples. Conventional PCR machines are

bulky, slow, and consume large reagent volumes and an affordable, compact, efficient,

easy-to-use alternative has yet to emerge.

In this work, a microfluidic PCR platform was developed consisting of a low-cost,

multi-chamber polymer microchip and a laser-mediated thermocycler capable of inde-

pendent thermal control of each reaction chamber. Innovations in polymer microchip

modeling, fabrication, and characterization yielded a low-cost solution for sample

handling. A simple optical system featuring an infrared laser diode and solenoid-

driven optical shutter was combined with a microfluidic temperature measurement

system utilizing embedded thermocouples to achieve rapid thermocycling capable of

multiplexed temperature control. We validated the instrument with sensitive amplifi-

cations of multiple viral targets simultaneously. This technology is a breakthrough in

practical microfluidic PCR instrumentation, providing the foundation for a paradigm

shift in low-cost, high-throughput genetic diagnostics.
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CHAPTER I

INTRODUCTION

1.1 Motivation

Viral respiratory, gastrointestinal, and encephalitis diseases are often associated with

significant morbidity and mortality. Diagnoses of the agents responsible for cases

of these diseases are difficult because the clinical symptoms for different pathogens

are often similar or indistinguishable. For example, the SARS virus, responsible

for the first pandemic of the 21st century, exhibits non-specific respiratory infection

symptoms [1]. The current epidemic of Ebola virus in West Africa is another example

of the dangers of a pathogen known to present symptoms easily confused with other

infectious agents [2, 3]. The need for timely diagnosis of infections, which applies to

not only these extreme cases but also to the routine care provided by hospitals and

clinics everywhere, is not being adequately met by current detection technologies.

This thesis focuses on the development of a microfluidic platform capable of rapid,

parallelized genetic sample sample preparation, representing a milestone in the per-

formance and accessibility of diagnostic tools. Efforts were focused on the design,

fabrication, and validation of a practical, reliable, and affordable instrument capable

of sensitive, multiplexed virus detection while minimizing reagent consumption and

maximizing ease-of-use.

1.2 Polymerase chain reaction

Traditional techniques for virus detection include immunoassays, direct fluorescent

antigen testing, and viral culturing. These methods are still widely used but suffer
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from numerous limitations. For example, culturing a virus can take 3–30 days, re-

quires trained personnel, and clinical trials have shown this method to be less sensitive

than modern alternatives [4, 5, 6]. Gradually, the bench tops of microbiology labs are

evolving with our increasing knowledge of genetics and the appearance of assays and

accompanying instrumentation that harness the power of nucleic acid tests for faster,

more reliable diagnoses.

One such technique is the polymerase chain reaction (PCR), which provides a

highly specific and sensitive method for exponentially amplifying a DNA sequence

from as little as a single copy by thermocycling a biochemical cocktail [7]. PCR

has become a ubiquitous tool in the fields of biology and medicine for countless

applications involving the study of nucleic acids, including forensics, personalized

medicine, and pathogen detection for scenarios ranging from routine clinical care to

outbreak response and surveillance [8].

The essential reagents for performing PCR include buffer solution, MgCl2, dNTPs

(dATP, dCTP, dGTP, dTTP), a thermostable polymerase, primers, and the template

nucleic acid (either DNA or RNA that has a complementary strand generated via

reverse transcription, also known as cDNA) containing the sequence of interest. The

key discovery that enabled this technique was the use of polymerase enzyme isolated

from the thermophilic bacterium Thermus aquaticus, known as Taq polymerase. This

enzyme can survive the high temperatures required for denaturing DNA, a necessary

step for the replication process. The specificity of PCR is based on the primers,

which are short oligonucleotides (typically around 20 bases in length) that bracket

the sequence of interest.

PCR is a temperature-driven process, with the sample undergoing thermocycling,

where each cycle consists of three critical phases: 1) Heating to the DNA denaturing

temperature of 95◦C, separating the strands; 2) Cooling to the annealing tempera-

ture, which is determined by characteristics of the primer set and typically ranges
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from 40–70◦C, allowing primers to anneal to the template strands; 3) Heating to the

extension temperature of the polymerase, which is typically 72◦C, where dNTPs are

incorporated to generate complimentary strands to complete the replication. At each

phase, the sample is maintained at the corresponding temperature to allow time for

the biochemical activity to take place. These three phases are repeated for n cycles

(typically around 30), to achieve a 2n fold increase in the sequence being amplified.

In practice, the reaction does not perform with perfect efficiency and final copy

number can be represented as starting copy number× (1 +E)n, where E represents

the efficiency of the reaction.

Conventional PCR thermocyclers make use of a thermoelectric heating / cool-

ing system to control the temperature of an aluminum block, which features cavities

typically sized for standard 0.2 mL polypropylene PCR tubes and allows for temper-

ature cycling of the samples contained in those tubes. These instruments have been

a mainstay in laboratories working with nucleic acids for many years and remain

extremely common for their ease of use and reliability. Still, there are numbers op-

portunities for innovations to overcome the limitations of conventional thermocyclers,

including the large required reaction volumes (>5 µL), slow analysis time (>30 min),

and susceptibility to thermal inconsistencies [9, 10]. Further, despite the high sample

capacities of most PCR instruments, operation is typically limited to uniform ther-

mal conditions and, in some case, a thermal gradient can be used, which is almost

exclusively employed for the process of developing reaction protocols. Yet, different

genetic targets have corresponding optimal annealing temperatures that depend on

the sequence length and GC content of their primers. Consequently, conventional

instruments only allow a single type of reaction or multiple reactions that can work

at the same conditions, which cannot always be easily accommodated. Some thermo-

electric instruments can generate a temperature gradient across a set of samples but
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the method remains slow and cannot achieve arbitrary, independently selectable con-

ditions. As such, this feature has only penetrated niche applications such as primer

annealing temperature optimization.

Having described the fundamentals of PCR, there are several variants to review

that are relevant to this work. When faced with the task of screening samples for

multiple targets, a standard PCR reaction will only amplify a single target, requiring

a time-consuming serial process of sample preparation and thermocycling. A solution

to this problem is a technique known as multiplex PCR, which was developed in

the 1980s [11] and has since become commonplace. Using multiplex PCR, one can

amplify multiple gene targets simultaneously using multiple primer sets designed for

a common annealing temperature in a single PCR mixture. Drawbacks to multiplex

PCR most notably include amplification bias due to efficiency variations, PCR drift,

and the high likelihood of primer-primer interactions [12, 13]. In addition, skilled

primer design and finely tuned reagent concentrations are required and cannot always

accommodate all desired target sequences [14].

Another variant is consensus degenerate PCR, a form of “broad” PCR. Instead of

utilizing known pathogen genomic signatures to detect known pathogens, this tech-

nique is capable of effectively identifying novel emerging pathogens or unsuspected

pathogens. The Centers for Disease Control and Prevention (CDC) use this method

for both routine screening and for the discovery of novel viruses. The method involves

designing specialized primers, known as consensus degenerate hybrid oligonucleotide

primers (CODEHOP), for targeting highly conserved regions across a viral family

and/or genera [15, 16, 17, 18]. Briefly, consensus degenerate primers work by observ-

ing conserved motifs in the protein sequences of a gene family. From this, a pool

of primers is designed with a common 5’ end, known as the consensus clamp that

contains a “best guess” sequence for the nucleotides flanking the target motif, and

a heterogeneous 3’ end, known as the degenerate core region containing all possible
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codons for 3–4 amino acids. This methodology not only amplifies nucleic acids from

known pathogens but also detects related novel pathogens due to the evolutionary

relationships of the organisms.

In parallel with the use of our technology for virus detection, we explored its ap-

plication to the challenge of rapid gene expression measurement in collaboration with

researchers studying stem cell differentiation. Gene expression measurement is an es-

sential tool for molecular biology studies. For example, understanding gene expression

patterns is fundamental to the study of mechanisms underlying stem cell pluripotency

and self-renewal [19, 20]. A variety of tools have been developed for quantitative gene

expression analysis across many genes and many cells. DNA microarrays allow one

to probe virtually the entire transcriptome [21] and have become widely used in pro-

filing expression of hundreds to hundreds of thousands of genes [22], although results

can be noisy [23, 24]. Fluorescence in-situ hybridization (FISH) is commonly used

when knowledge about the spatial distribution of gene expressions in cells or tissues

is necessary and has been done in fixed [25] and live [26] cells and has been advanced

further using quantum dots [27] and fluorescent tags [28]. However, scalability of this

technology to multiple genes in multiple cells and tissues is hindered by expensive

equipment and the need for long recording times and high-intensity illumination [25].

RNA sequencing technologies can be used to map a sample with no prior knowledge

of the samples genome by directly counting number of reads [29], albeit at relatively

high cost and long measurement duration.

The limited sensitivity, slow turnaround, and high costs of these techniques have

led to the common practice of gene expression profiling with another variant of PCR

known as quantitative, reverse transcription, polymerase chain reaction (qRT-PCR)

[30]. This technique, now widely regarded as the “gold standard,” allows for highly

specific, sensitive, and reproducible RNA quantification with a high dynamic range

by reverse transcribing RNA into DNA and then exponentially amplifying the target

5



sequence from as little as a single copy by thermally cycling, or thermocycling, a

biochemical cocktail.

Miniaturized, or microfluidic, PCR systems have focused primarily on either in-

creasing the number of genes able to be simultaneously measured [30, 24], increasing

the sensitivity of the system to single-cell analyses [31, 32, 33, 34, 35, 36, 37], or

developing systems with sample-in answer-out capabilities [38, 39, 40, 41, 42, 43].

Reports of large sample arrays [30, 24, 44] of sub-microliter reaction chambers have

been published for high-throughput qRT-PCR that amplify as few as 5 starting copies

of RNA in each chamber, effectively bridging the gap between the high-throughput

capabilities of microarrays and the sensitivity of qPCR [30]. In addition, researchers

have worked to expand the spatial frequency of single-cell analysis by separating and

measuring the gene expression of 300 single cells simultaneously [33].

While these tools are powerful, they require hours or days per analysis. However,

gene expression patterns can change across a broad range of timescales, from slow

events during development and pathogenesis (i.e., hours to days) to rapid responses

to environmental signals (i.e., minutes to hours) [45, 32, 46]. If the measurement

frequency can approach the gene expression timescales, real-time observation and

intervention becomes possible. There is therefore a need for technologies capable of

high temporal frequency sampling, governed by the Nyquist rate, to measure gene

expression kinetics in single cells or cell populations in real-time.

1.3 Microfluidic PCR

While PCR has become the gold standard for genetic sample preparation, it is of-

ten more expensive than conventional approaches [47]. Louie et al. [48] estimates

the cost of PCR, when considering reagents, equipment, dedicated space, personnel

training, and labor, to be as high as $125 per reaction. In order to reduce PCR

costs, reducing the reaction volume or diluting the reaction mixture offer potential
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solutions but these approaches face a number of obstacles. For example, conventional

PCR tubes are impractical for volumes less than 5 µL due to issues such as in-tube

evaporation and inadequate heat transfer due to the reduced ratio of heated surface

area to open air surface area of the samples. In addition, at these low volumes,

difficulties with accurate sample handling and dilution have been shown to produce

low-quality PCR products [49, 50]. Microfluidics presents the ideal solution for han-

dling smaller volumes, not only preserving precious reagents, therefore reducing costs,

but also reducing the thermal mass of the system, enabling faster thermal response

and lower power consumption compared to macroscale equivalents. Potential draw-

backs to the use of microfluidics for PCR can include the high surface-area-to-volume

ratios (SA:V) exhibited by typical microfluidic geometries. This can present problems

such as exaggerated surface chemistry phenomena and unfavorable parasitic heat loss

that creates problems for isolating heat generation on-chip.

Microfluidic PCR devices, which emerged in the late 1980s and early 1990s [51,

52, 53, 43], have proven to be effective tools in the research setting and, to some

extent, commercially for handling lower volumes and providing faster turnaround

times [54, 55]. The low thermal mass of the microfluidic reaction volumes not only

enable faster thermal response but can also help increase specicity due to reduced

transition times between PCR steps and improved temperature uniformity throughout

the sample [56]. Other advantages include integration of upstream and downstream

sample processing on the same device [43, 39, 57, 58] and portability for point-of-care

applications [59, 60, 40, 61].

Planar microchips for PCR, some of the earliest appearing in the mid-1990s

[52], have become the preferred format. These devices can be made from a va-

riety of substrates, such as silicon, glass, and, more recently, polymers including

poly(methyl methacrylate) (PMMA), cyclic olefin copolymers (COC), polycarbonate

(PC), polyethylene terephthalate (PET), and polydimethylsiloxane (PDMS); PMMA,
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PC, COC, and PE are microfluidic substrates that fall in the “glassy polymers” cat-

egory. The advantages and disadvantages for common microfluidic substrates can be

seen in Table 1. Microfluidic device fabrication in polypropylene is rare, though not

unheard of [30], because of the challenges of material shaping processes for micro-scale

features and bonding. Microchips are fabricated using a wide range of techniques such

as chemical etching [62, 63], thermoforming [64, 65], casting [66], and laser etching

[67].

Table 1: Comparison of relevant properties of substrate materials for microchips used
for PCR.

glass PDMS PET PMMA
cost $40 $2 $0.15 $0.50
fabrication time 24 hrs 24 hrs <10 min 2 hrs
batch fabricated? yes yes no no
reproducibility moderate excellent good excellent
durability low moderate low high
biochemical compatibility excellent good limited limited

Despite the many advances in the field of microfluidic PCR, there are factors lim-

iting large-scale adoption. For instance, while PCR recipes typically call for a poly-

merase concentration of 0.02–0.025 U/µL, the recipes for microfluidic PCR frequently

require 2–20× more than the conventional polymerase concentration [68, 38, 69].

Within the field of virology, demonstrations of such devices are typically limited to

common amplifications at relatively high starting template concentrations (e.g., 0.1–

100 ng) [70, 71, 58]. More challenging reactions that are useful in clinical and research

settings, such as broad-range PCR using consensus degenerate primers, have not been

widely demonstrated with microfluidic systems. Ideally, innovations in the fabrica-

tion and characterization of polymer microfluidics can produce a device capable of

attaining sensitivity and specificity comparable to conventional PCR tubes without

the need to increase polymerase or template concentration.
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1.4 Laser-mediated PCR

The task of integrating heating systems with microdevices has been carried out at

various degrees of accuracy and complexity. The implementation and effectiveness of

the heat transfer modes: conductive, convective, and radiative, depend on material

selection, fabrication allowances, and the performance requirements of the respec-

tive application. While many microfluidic devices have increased throughput with

smaller sample volumes, they continue to rely on conventional conductive heating

from macroscale thermoelectric heating blocks [54, 72]. Resistive [73, 62] and con-

vective [74] heating have also been implemented. The Roche LightCycler makes use

of circulating hot air to perform thermocycling for 10 µL samples contained in glass

capillaries [75].

Radiative heating has been utilized for faster, more controllable microfluidic heat-

ing systems for applications including PCR (as the primary [76] or supplementary

[77, 78] heat source), cell lysis [79], liquid handling via melting of wax valves [80],

and DNA trapping via thermophoresis [81, 82]. Configurations range from broad-

band sources to focused, monochromatic sources and offers the unique advantage of

direct, non-contact heating for greater efficiency and ramping rates as compared with

resistive and convective heating instruments. Broadband sources such as a tung-

sten filament lamp can provide fast thermocycling of small volumes for rapid PCR

[39, 71, 76, 83]. Laser-mediated radiative heating offers similar advantages and has

been demonstrated for rapidly thermocycling droplets [84, 85, 77]. The smaller spatial

scales and faster heating and cooling rates of microfluidic PCR systems can complicate

temperature sensing and control. Techniques used in previous work include reference

chambers with thermocouples [76], uorescent dyes [85], pyrometers [86], resistance

measurements [73], and open-loop control [87].

Of the heat transfer modes for microchip temperature control, radiative heat-

ing offers several unique advantages. By matching a source of radiation to strongly
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absorptive wavelengths of a particular liquid, radiative heating efficiently transfers

energy to the medium of interest and can yield rapid temperature ramping (e.g., 32

◦C/s for water [77]). Additionally, an external source keeps microchip design and

fabrication simple and mediates the risks of adsorption and reaction inhibition due

to the presence of incompatible materials embedded in the device, as encountered in

other microfluidic heating schemes [62]. The external source also makes a disposable

microchip platform more feasible. The Landers group at the University of Virginia has

pioneered the use of radiative, or non-contact, temperature cycling for genetic anal-

ysis instrumentation. For example, using a tungsten filament lamp, sample volumes

of 270 nL can be thermocycled 25 times in only 5 min to achieve high-speed PCR.

Other developments in radiative heating include the work of Yasuda [77] and Faris

[84], using infrared laser radiation to perform real-time PCR in 10-30 nL droplets

suspended in mineral oil with amplification times of 3.5 and 6 min, respectively. This

approach represents great potential for fast, high-throughput microfluidic solutions

for temperature-dependent processes.

1.5 Functional requirements

Based on the many challenges of achieving rapid, affordable, and commercially viable

detection of genetic targets, we devised a microfluidic PCR platform with a set of

functional requirements to be addressed in each proceeding Chapter. To summarize,

our PCR platform must enable:

Microfluidic sample handling: Repeatably load 1 µL sample volumes in a

microchip without the need for external pumps.

Thermocycling: Control sample temperature within a 0.5◦C tolerance for re-

peated denaturing at 94◦C, annealing over a range of 40–70◦C, and extension at

72◦C.
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DNA amplification: Perform sensitive amplification at clinically relevant tem-

plate starting copy numbers by combining accurate thermocycling with strategies for

minimizing sources of inhibition such as bubble formation and reagent loss due to

surface adsorption.

Thermal multiplexing: Independently control sample temperature to perform

PCR amplification of two distinct genetics targets simultaneously.

This final functional requirement requires some elaboration. By exploiting the

degree of optical control of our temperature control system and the thermal isola-

tion achieved with our polymer microchip, we devised an alternative to traditional

multiplex PCR for targeting multiple gene sequences via “thermal multiplexing,” in

which the reaction temperatures for an array of samples are controlled independently

to achieve multiple, distinct thermal profiles for multiple, optimal amplifications.

The end goal is the same as the biochemical approach of multiplex PCR: by targeting

multiple sequences at once, additional information may be gained from a single ampli-

fication run that otherwise would require more time and reagents. Unlike traditional

multiplex PCR, thermally multiplexed PCR does not require specialized reaction de-

sign and allows the consolidation of any set of pre-existing reactions into a single

instrument run.

In this work we present a system designed for thermally multiplexed PCR compris-

ing a simple, pressurized microfluidic chip, an infrared laser thermocycler that allows

for direct heating of the samples, and a closed-loop temperature control method. We

demonstrate the ability of this system to simultaneously generate different annealing

temperatures in a microchip using a single radiative heat source. We model, charac-

terize, and apply this system to amplifications for a pair of distinct DNA targets as

a demonstration.

To perform thermally multiplexed PCR, a heat source is uniformly distributed,
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Figure 1: (a) Thermal multiplexing can be generalized to a uniformly distributed
and independently attenuated heat source delivered to an array of reaction cham-
bers. (b) Theoretical temperature profiles for n reactions illustrating the capability
of maintaining a set of distinct annealing temperatures simultaneously for optimal
amplification of unique DNA targets.

independently and arbitrarily modulated, and directed to an array of reaction cham-

bers as depicted in Figure 1a. The heat source delivers a constant power, q, divided

equally amongst n chambers as q/n. Each attenuator (e.g., optical shutter, valve,

filter, variable resistor) modulates the power q/n according to a unique programmed

function (e.g., pulse width modulated square wave), fi(t) for 1 < i < n and 0fi(t)1.

Each chamber is thus heated to temperature profile Ti(t), shown in Figure 1b, by the

power profile qi(t) = (q/n)fi(t).
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CHAPTER II

DISPOSABLE PCR MICROCHIP

In the development of a viable microfluidic technology that offers not only high per-

formance but ease of use and affordability, the most critical element is the microfluidic

device. This chapter will describe the process of designing, fabricating, and testing a

microchip for laser-mediated PCR. Design efforts were driven by finite element mod-

eling, which helped identify the most desirable material properties and geometries for

the device. A non-traditional approach to fabrication via micro-milling allowed us to

rapidly iterate designs and yield geometries unattainable by conventional methods.

Towards the implementation of the device for viral screening applications, a thorough

characterization of biochemical compatibility with PCR reagents was undergone to

arrive at a low-cost polymer microchip capable of rapid and efficient amplification of

genetic targets.

2.1 Design

As a starting point for the design of our microfluidic device, a basic layout was

established for the device consisting of three essential features required for static PCR:

a reaction chamber where the microfluidic sample would be isolated and subjected

to thermocycling, ports for loading the sample into the device (i.e., world-to-chip

interface), and fill channels for transporting the sample from the ports to the reaction

chamber. In order to size these features, select appropriate materials and fabrication

methods, and develop the necessary treatments and protocols for the implementation

of this device, extensive modeling and experimental characterization was employed.
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Figure 2: A simplified version of our dual-laser microfluidic PCR system. The mi-
crochip, featuring two 1 µL reaction chambers, is aligned over two infrared lasers
with mechanical shutters positioned in the optical paths for modulation of radiation.
(Optics, pressurization, and temperature sensors excluded for clarity.)

2.1.1 Optical and heat transfer model of radiative heating

Controlling the temperature of liquids in a microfluidic device is often a critical func-

tional requirement in the design of miniaturized systems for biological analyses. In

addition to the precise temperature control required for PCR thermocycling, Inducing

elevated temperatures is commonly utilized for cell lysis [88, 89], protein denatura-

tion [90], heat shock DNA transformation [91], and activating the lambda red genetic

pathway for homologous recombination experiments [92]. Generating reliable dy-

namic thermal conditions is also important for applications such as melting curve

analysis and enzyme reaction control [93]. Therefore, a modeling tool for the reli-

able prediction of thermal response in a microfluidic device would be valuable for the

design of any of these technologies.

Developing such a tool was an important first step towards the deterministic de-

sign our microchip platform. A combination of analytical and finite element models
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Figure 3: Control volumes for thermal modeling can include either (a) both the reac-
tion chamber and surrounding substrate, where the dominant in-plane heat transfer
mode is convection, or (b) only the reaction chamber, where the dominant in-plane
heat transfer mode is conduction through the substrate.

were used to predict the thermal behavior of a microchip, notably the sample and

its microenvironment, when subjected to a radiation source. The start point for this

effort was to examine previous work on glass microchips in which reaction cham-

ber design was optimized using heat transfer analysis that modeled the sample and

immediately surrounding substrate as an effective medium for a simple lumped ca-

pacitance treatment [94]. From there, a more generalized approach was taken to

model the steady state and transient behavior for radiative heating in a microchip.

Specifically, we used optical modeling to determine the theoretically absorbed input

radiation then applied closed-form analytical equations and finite element methods to

model the thermal responses for specific cases of aqueous samples in glass and poly-

mer microchips irradiated by broadband blackbody and monochromatic sources. We

compared these models with experimental measurements. These generalized mod-

els apply to any source, materials, and geometry for which the optical and material

properties are known.

Modeling was performed for the radiative heating of a simplified microchip consist-

ing of a pair of closely spaced reaction chambers containing liquid samples surrounded

by a substrate material. Control volumes were drawn either around both the chamber

and immediately surrounding material, for the effective medium approach (Figure 3a),

or only around the reaction chamber (Figure 3b).
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Since virtually all microfluidic devices are fabricated with thin substrates, heat

transfer out of the plane (z-direction) is dominated by convection. In-plane heat

transfer (x-y plane) will involve both conduction and convection and the relative

dominance of one or the other depends heavily on the thermal properties of the

substrate material and area over which radiative heating occurs. Without making

any presumptions regarding the appropriateness of a particular model, both lumped

capacitance and finite element methods were applied.

The initial modeling approach applied the assumption that both the liquid sample

and surrounding material are at a uniform temperature, corresponding to the control

volume illustrated in Figure 3a. This problem has known boundary conditions and

can be solved with lumped capacitance treatment, for which an energy balance is

applied as

V ρcp
dT

dt
= Qrad,in −Qcond,out −Qconv,out −Qrad,out , (1)

where

Qcond,out =
ksAcond∆T

L
, (2)

Qconv,out = hAconv∆T , (3)

and

Qrad,out = FAtεsσ
(
T 4 − T 4

∞
)
. (4)

With the exception of Qrad,in, the terms of the energy balance differential equation

are detailed in previous literature that describes the optimization of a glass microchip

design [94]. Briefly, T is the temperature, V is the total volume of the heated region,

and material properties such as density, ρ, and specific heat at constant pressure,

cp, which apply to the entire effective medium, are calculated with mass-weighted

averages of the constituent liquid and solid properties. Qcond,out is the conduction

losses to unheated parts of the microchip (if applicable), given by Equation 2 in
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which ks is the thermal conductivity of the substrate, Acond is the cross-sectional

area at the interface, and L is the length of the conducting region in the direction of

conduction. Qconv,out is the free convection out, given by Equation 3 where Aconv is the

total convecting surface area of the medium and h is the heat transfer coefficient. This

is calculated from the Nusselt number, which is found using an empirical correlation

with the Rayleigh and Prandtl numbers based on the particular geometry of the

convecting body. Qrad,out is the radiation out, calculated by Equation 4, where F is

the shape factor, At is the total exposed area of the control volume, εs is the emissivity

of the medium, and σ is the Stefan-Boltzmann constant.

The theoretical radiation into the control volume, Qrad,in, was calculated from the

optical properties of the source and the geometric and absorptive properties of the

absorbing media. For the source, spectral irradiance data was scaled by integrating

over its full spectrum and equating it to the known total power output. This yielded

the scaled spectral power distribution, P0 (λ). The losses due to reflection at the

air-glass and glass-water interfaces were calculated to be 4% and 0.5% respectively

based on simplified reflection coefficient equations for near-normal incidence. Using

absorption coefficients, α (λ), of the absorbing media and the path length, l, through

which the radiation travels, the absorbed power Pabs (λ) was calculated using the Beer-

Lambert law as Pabs (λ) = P0 (λ) (1 − 10−α(λ)l). This was integrated with respect to

wavelength and, in the case that the focal spot was larger than the control volume,

adjusted for the incident area and, if necessary, the intensity distribution, in turn

providing the radiative power into the control volume. For the spatial and temporal

scales we are concerned with in this study, the quasi-Gaussian distribution of the laser

and the lamp focal spots were assumed uniform. The sum of all absorbing bodies that

constitute the effective medium yields Qrad,in.

Considerations when determining the radiant power from an incandescent lamp

included the power supply dependent spectral curve, which shifts towards blue with
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higher power. Calculations accounting for this shift within our practical power range

indicated a negligible effect (e.g., less than 5%) on the final absorbed radiation cal-

culation.

Equation 1 was first solved algebraically for the steady state temperature of the

effective medium
(
dT
dt

= 0
)
. The energy balance was solved for T (t) using an explicit

numerical method, specifically Runge-Kutta via MATLAB’s ode45 solver, to calculate

the transient response.

The second modeling approach applied the assumption that thermal gradients

in the substrate cannot be neglected and the control volume must be drawn as in

Figure 3b. This is relevant for cases in which either the substrate does not readily

absorb the spectral range of the source or the spatial distribution of the radiation

is highly localized to the chamber. Modeling such a scenario was best accomplished

with finite element analysis.

The geometry of the microchip was first created in COMSOL finite element soft-

ware and divided into subdomains and boundaries, each of which was assigned the

specific parameters of the problem. Subdomains were assigned appropriate material

properties, along with a heat generation value for each absorbing subdomain. This

heat generation term was calculated from the same optical modeling described above

for determining Qrad,in in the previous approach, which must then be divided by the

volume of the absorbing region for units of W/m3. For the exterior boundary condi-

tions, a heat transfer coefficient, h, was calculated from the Nusselt number, as earlier

described. For the interior boundaries, continuity was applied.

The transient response was then solved from a set of differential equations for the

subdomains, the external boundaries, and internal boundaries. The subdomains are

governed by

δtsρcp
∂T

∂t
+∇ · (−k∇T ) = Q , (5)

where δts is the time scaling coefficient which is equal to 1 for the transient case, ρ is
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the material density, cp is the heat capacity at constant pressure, T is temperature, t

is time, k is the thermal conductivity of the material, and Q is the heat generation.

External boundaries were defined as

−n · (−k∇T ) = h (Tinf − T ) + εσ
(
T 4
amb − T 4

)
, (6)

where n is a normal vector, k is the thermal conductivity, T is the temperature, h

is the heat transfer coefficient, Tinf and Tamb are the external ambient temperatures,

ε is the surface emissivity, and σ is the Stefan-Boltzmann constant. For the internal

boundaries

−nu · (−ku∇Tu)− nd · (−kd∇Td) = 0 , (7)

where n is a normal vector, k is the thermal conductivity, and T is temperature. The

u and d subscripts refer to the two different subdomains that meet at the internal

boundary.

Once initial conditions were set, the geometry was meshed and the problem was

evaluated for specified duration. A mesh sensitivity test was performed by refining

the mesh until the results did not change between successive simulations.

The above described models were implemented and experimentally validated for

radiative heating in glass and plastic microchips coupled to blackbody and monochro-

matic radiation sources. The glass device is a two-chamber microchip designed for

PCR with 500 nL samples, courtesy of James Landers at the University of Vir-

ginia. The device is made of borosilicate glass and was fabricated using standard

photolithography, wet-etching, and thermal bonding techniques. The plastic device

is made of poly (methyl methacrylate) (PMMA) and possesses geometry that ap-

proximates that of the glass device. It was fabricated in-house by laser etching the

features with a CO2 laser cutter (VersaLASER, VLS3.50). The dimensions were con-

firmed with surface profilometry (Dektak 3030) and the enclosed two-layer device was

thermally bonded in boiling water [95].
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Figure 4: Experimental validation of the heat transfer modeling involved glass and
polymer microchips irradiated by a blackbody tungsten-filament lamp (left) and a
monochromatic infrared laser diode (center). Thermocouples inserted to the edge of
the reaction chamber (right) allowed temperature monitoring. (Not to scale.)

A 50 W tungsten-filament incandescent projector lamp (Eiko, CXL/CXR 8 V

50 W) was used for the blackbody source and a 600 mW 1450 nm laser diode (Hi-

Tech Optoelectronics, LMD-1450-600-33) for our monochromatic source, which was

selected to match an absorption band of water. The experimental setup is depicted

in Figure 4. For the lamp, the total power output was calculated from the electrical

power supplied, P = V × I, where V is the voltage and I is the current. Spectral

data for determining the absorbed radiation was transcribed from a spectral irradiance

curve with a resolution of 25 nm for the range from 300 to 5000 nm. For the laser,

the power output is a known function of the supply current and was confirmed with

a thermal power meter (Thorlabs, PM10-3). The Gaussian beam profile of the laser

diode was sampled with a spectral resolution of 0.5 nm for the short-wavelength

infrared range of 1440–1460 nm.

Since the blackbody radiation of the lamp tended to melt the PMMA microchip,

this combination was excluded from practical testing, leaving three cases for modeled

and experimental validation: 1) lamp heating of water in glass, 2) laser heating

of water in glass, and 3) laser heating of water in polymer. Temperatures were kept

between the ambient 25◦C and 100◦C to avoid damaging the PMMA microchip, which

has a glass transition temperature of approximately 105◦C. Therefore, the radiative
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sources were not always operated at full power.

The lumped capacitance and finite element approaches were both implemented

for each case. As earlier mentioned, the thin substrates of most microfluidic devices

result in negligible thermal gradients across the thickness dimension (z ), leaving con-

vection as the primary mode of heat loss. On the other hand, thermal gradients across

the width (y) and length (x ) of a device may not be sufficiently uniform for the ap-

plication of the lumped capacitance assumption. As a preliminary assessment of this

temperature uniformity, a three-dimensional finite difference model, programmed in

computation software Engineering Equation Solver (EES) using Equation 1, calcu-

lated the steady state temperatures for a set of nodes representing the heating cases

for heating in a glass chip for the lamp and laser.

The transient solutions for each case were first calculated by applying the lumped

capacitance approach and were solved using the Runge-Kutta method. The cases

were then solved using finite element software COMSOL Multiphysics for simplified

geometry of the glass and polymer microchips. The reaction chambers were specified

as water volumes and were assigned heat generation values based on the theoretical

absorbed radiation. For the case of the lamp heating in a glass microchip, the glass

and water were both assigned heat generation values. For the laser heating in glass

and polymer chips, only heat generation in the liquid reaction chambers needed to

be specified since the absorption of the 1450 nm laser output by the solid substrates

is negligible. The finite element solver was run for a time domain of 60 seconds

and temperature values were recorded every 0.01 second at ten equally spaced points

along the centerline of the reaction chamber. The values at the ten points were then

averaged to obtain the mean temperature for the liquid chamber. A mesh sensitivity

test revealed no need for refinement of the auto-generated mesh.

For experimental validation, lamp heating was performed at an intermediate power

level of 9.3 W as specified in the models. Laser heating in glass was performed at the
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full power of 620 mW. For heating in the polymer device, the power was reduced to

300 mW to prevent instabilities resulting from bubble formation at temperature near

boiling.

The lamp was powered with a variable power source and focusing was achieved

with an ellipsoidal retroreflector, which provided a roughly circular focal spot with

a diameter of about 10 mm. The laser was driven with a low-noise current source

(Thorlabs, ITC133) and controlled with a 10 Hz PWM signal output from a National

Instruments LabView program. The diverging beam was collimated with an aspheric

molded glass lens (Thorlabs, A230TM-C), producing a 5 × 2 mm elliptical spot. The

ramping of output intensity of each source was measured with a power meter and

rise times were considered negligible compared to the transient heating time scales,

justifying the use of a step input for the model.

Temperature was measured using a calibrated T-type thermocouple (Physitemp

Instruments, T-240C), a thermocouple-to-analog converter (Omega, TAC80B-T), and

an analog amplifier. This measurement system will be discussed in greater detail later

in Section 3.2.1. Measurements were recorded with LabView and data collection was

synchronized with the power supplies for the lamp and laser using a digital output

from data acquisition hardware. The thermocouple, which has a response time of

3–4 ms, was inserted into the reaction chamber through an inlet channel, as pictured

in Figure 4. The thermocouple tip was positioned with minimal protrusion into

the chamber to avoid direct irradiation. With an insertion length of 500 µm and

a diameter of 125 µm, the thermocouple occupied only 0.5% of the total chamber

volume and had a negligible influence on the thermal mass.

Preliminary tests for the presence of thermal gradients using finite difference anal-

ysis to calculate steady state temperatures are shown in Figure 5, which reveals the

temperature profiles for lamp and laser heating in glass over the length, width, and

thickness of the whole device. While heating with the blackbody source results in
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Figure 5: Modeled steady state temperature profiles over normalized dimensions of
the water-filled glass microchip for lamp (solid) and laser (dashed) heating. Larger
thermal gradients are observed over the length and width for the laser simulation
compared to the more uniform profiles for the blackbody lamp heating.

roughly uniform temperatures, the laser heating profiles show more localized heat-

ing behavior inconsistent with the prerequisite condition for the effective medium

assumption.

The reasons for this behavior are elucidated in Table 2, which summarizes the

absorbed radiation values for the lamp and laser heating in the glass microchip.

Despite the much greater efficiency of laser heating an aqueous sample, the lamp’s

higher power output and significant absorption by the glass results in a device of

uniform temperature and conductive losses from the reaction chamber are therefore

minimized. Conversely, the laser heating is localized in the liquid medium because

of the smaller focal spot and the transparency of the microchip substrate to the

infrared radiation. This results in greater heat sinking by the substrate, i.e., in-plane

conductive heat loss. Despite the categorization of glass as an insulator, its thermal

conductivity (1.1 W/m·K) is approximately 5–10× larger than that of a common

polymer such as PMMA (0.19 W/m·K) [96].

The optical characteristics for the various heating cases and the results of the uni-

formity testing suggested the use of finite element methods to capture the localized
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Table 2: Percentage of total radiation absorbed by an aqueous sample and glass
microchip from a broadband lamp and monochromatic laser source.

Source
Absorbing medium

Water Glass

Lamp 2% 10%

Laser 70% 1%
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Figure 6: Modeled and experimentally validated transient thermal responses for (a)
broadband lamp heating of a glass microchip, (b) infrared laser heating of a glass
microchip, and (c) infrared laser heating of a polymer microchip.

heating by our laser. The transient models are compared to experimental data in

Figure 6. As a metric for the accuracy of the models when compared to the exper-

imental data, root mean square deviation was calculated as
√

1
n

∑
|Texp − Tmodel|2.

For lamp heating of glass, the effective medium model exhibits a deviation of 4.54◦C

while the finite element model matches slightly better with a deviation of 3.10◦C.

For laser heating in glass, the effective medium model deviates considerably with a

mean difference of 61.17◦C, which is to be expected from the temperature uniformity

results of Figure 5. The finite element model offers a much better correlation with a

deviation of 1.37◦C. Similarly, for laser heating in our polymer device, the effective

medium model is 59.25◦C off while the finite element model deviates by an average

of 3.14◦C.

With the lamp powered at 9.3 W, which corresponds to the data in Figure 6a,

the radiation absorbed by the water is approximately 20 mW while the glass absorbs
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110 mW and results in a steady state temperature of 62◦C. To compare, the laser

operating at its full power of 620 mW imparts 435 mW to the water but the sample

only reaches a steady state temperature of 64◦C as shown in Figure 6b. Without a

heated substrate, the liquid volume suffers from significant conductive losses and the

ratio of steady state temperature to power absorbed by the water is much lower than

that for lamp heating. The less thermally conductive polymer microchip exhibits

reduced conductive heat loss and with the laser power at less than half of that used

for glass chip heating, the steady state temperature is a much higher 95◦C as shown

in Figure 6c.

Small discrepancies between the modeled thermal responses and the experimental

data can be attributed to the difficulty in achieving the perfect alignment and spacing

inherent in the modeled cases. Additionally, the adjustments made for the theoretical

intensity distribution of the sources will be approximations of the actual distributions.

By delineating the radiative contributions of a particular light source to the heat-

ing of sample and substrate volumes, the optical modeling provides not only inputs

for the heat transfer analysis but also key insights into the efficacy of radiative heat-

ing for the variety of microfluidic design permutations. In many ways, heating with a

blackbody radiator is viable for a thermally stable substrate because it mimics con-

ventional contact-based heating by directly heating both the sample and substrate

while retaining the advantages of the non-contact method. But the limitations of

blackbody heating for applications demanding lower substrate cost, higher through-

put, and greater spatial control point to the use of a laser with a polymer substrate

as the optimal combination.

With a better idea of the type of source and microchip material to be used, the

finite element model was implemented for refining the microchip design and addressing

concerns regarding optimal chamber geometry and spacing.
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Figure 7: A series of finite element simulations for a variety of reaction chamber
geometries correlate steady state temperature with path length (chamber depth) and
surface-area-to-volume ratio, indicating the optimal conditions for efficient heating
(dashed line).

2.1.2 Reaction chamber geometry

The specific geometry of microfluidic features can play a major role in the perfor-

mance of the device. For PCR in particular, the geometry can dictate heating effi-

ciency as well as biocompatibility, since the high surface-area-to-volume ratios inher-

ent in miniaturized systems can lead to a form of fouling in which critical biochemical

reagents will accumulate on the device surface and adversely affect the reaction. The

biocompatibility concerns will be addressed in a later section. Here we will address

heating performance as it relates to geometry.

Unlike most traditional microfluidic PCR systems in which the entire microchip

is heated and therefore benefit from high SA:V for greater energy transfer from the

substrate, our method of localized radiative heating results in different behavior and

therefore an unconventional optimal geometry. To determine this geometry, the pre-

viously described finite element model was used to simulate radiative heating via an

infrared laser for a series of reaction chamber geometries in a polymer microchip.

With a fixed reaction chamber volume of 1 µL and a square in-plane cross section,
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a set of eighteen path lengths (depth, or z -dimension length, of the chamber) were

chosen for a range from 50 µm up to 6 mm. Focal spots for each case were assumed to

be perfectly distributed over the particular cross section. For each modeled response,

steady state temperature was recorded and plotted against path length, as shown in

Figure 7. Additionally, surface-area-to-volume ratio, or SA:V, was calculated for each

geometry and plotted alongside the model outputs in Figure 7. The resulting trends

indicate a fortunate overlap between optimal geometry for efficient radiative heating,

where a maximum steady state temperature was observed at 500 µm path length,

and optimal geometry for biocompatibility, where the SA:V is near its minimum and

therefore causing minimal reaction inhibition, as explored later.

In addition to finite element modeling, which was the key to understanding the

basic behavior of our microchip, we considered factors such as availability of substrate

material, limits of fabrication methods, chamber filling behavior, and flexibility of the

infrared laser focal spot size to determine a practical geometry. Following the man-

ufacture and testing of several design iterations, a final reaction chamber geometry

was selected. A volume of 1 µL was chosen for being sufficiently small for low reagent

consumption, while being practical to interface with routine equipment (e.g., pipettes,

reagent kits, electrophoretic instrumentation). As depicted in Figures 12b and 17, the

chamber was a trapezoidal prism, tapering from a 500 µm × 2.75 mm cross section to

a 500 µm × 1.75 mm cross section in the x -y plane, roughly matching the elliptical

focal spot shape of our collimated laser. Chamber depth was 750 µm. Fill channels,

used for loading the sample and separating the inlet ports from the reaction chamber

while minimizing dead volume, were 250 µm wide and 250 µm deep and traced a

3.5 mm U-shaped path from the ports to the chamber. This shape allowed the ports

to be in close enough proximity to allow a gasket to surround the ports for pressur-

ization of the microchip, described later in Section 2.3. 700 µm diameter inlet ports

allowed for the loading of a sample directly from the tip of a micropipette, obviating
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Figure 8: Finite element simulations were used to assess thermal isolation (a) without
and (b) with air pockets between the reaction chambers. The sample simulation
presented here shows the top view of in-plane (x -y) thermal crosstalk resulting from
heating a 1 µL aqueous sample in an array of chambers spaced 1 mm center-to-center.
Improved isolation can be observed for the air pocket geometry.

the need for specialized fittings for macro-to-micro, or world-to-chip, interfacing. All

microfluidic features were imparted to a 1.5 mm thick substrate.

2.1.3 Reaction chamber spacing

With plans for scaling the throughput of our microfluidic system and with the desire

for adjacent reaction chambers to operate at multiple distinct temperatures simulta-

neously, the limits of thermal isolation needed to be determined. Our finite element

model was again applied to study the effect of chamber separation on steady state

temperature difference between adjacent chambers. The specific need for thermal

isolation relates to the ability to achieve the full range of annealing temperatures,

from 48◦C to 76◦C (28◦C range), in adjacent reaction chambers, determined using

a primer melting temperature calculator [97]. For a chamber separation of 1 mm,

temperature difference between adjacent chambers as a function of the steady state

temperature of the heated chamber was modeled and experimentally measured, as

plotted in Figure 9a. The model closely matches the experimentally measured ther-

mal behavior and reveals that at the maximum practical annealing temperature of

76◦C, the adjacent chamber can only reach temperatures roughly 12◦C lower, which
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Figure 9: (a) Finite element model (line) and experimental data (circles) showing
temperature difference between two 1 µL chambers as a function of the steady state
temperature of the heated chamber in a PMMA microchip with 1 mm chamber sep-
aration. Temperature of adjacent chambers as shutter duty cycle of one is varied for
separations of (b) 1 mm and (c) 40 mm.

would greatly limit the range of possible reactions.

Using our validated model, we computed that a chamber separation of at least

3 mm was required to achieve the full 28◦C range of annealing temperatures. A

set of two-chamber PMMA microchips were then used to experimentally measure

the temperatures in adjacent chambers undergoing infrared laser heating for small

(1 mm) and large (40 mm) center-to-center chamber separations (Figure 9b,c). The

1 mm spacing was selected because it represents the practical limit of our fabrication

method, since smaller chamber separations do not provide enough surface area for

adequate bonding at the dividing barrier between chambers and results in leakage.

Additionally, 1 mm spacing allows straightforward delivery of radiation from a single

laser source to the two chambers using a collimating lens and custom injection molded

lens array with 1 mm interlens spacing [98]. The 40 mm spacing was selected to allow

the microchip to span two laser sources, since the lasers and accompanying optics

are mounted in side-by-side 30 mm cage systems (Thorlabs). Mechanical shutters

were placed in the beam path and controlled with a 10 Hz PWM signal to modulate

optical power and generate temperature differences. Radiation to chamber 1 was
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Figure 10: Optical properties of poly (methyl methacrylate) (PMMA) over 200–
3000 nm spectral range. At 1450 nm (dashed line), which matches an absorption
peak of water and corresponds to the wavelength of the infrared laser used in this
work for heating, the polymer is relatively transparent and therefore suitable for use
as our microchip substrate. Data reproduced from published work [99].

modulated at a constant duty cycle while the radiation to chamber 2 was modulated in

a stepwise pattern. Results indicate that systematic control of chamber temperatures

with mechanical shutter modulation is feasible. In addition, 40 mm spacing can be

seen to cover the full range of relevant temperatures, as predicted by the model. When

implemented experimentally, such large chamber separation is not only beneficial for

steady state temperature difference, but also improves transient thermal crosstalk

affecting heating and cooling rates.

2.1.4 Material selection

In choosing a substrate material for our microchip, several candidates were consid-

ered and tested. One of the most commonly used polymers for microfluidic devices is

polydimethylsiloxane (PDMS), an elastomer that is typically used for casting devices

from an SU-8 mold made by photolithography. This casting is then bonded to a glass

slide for encapsulating the channels and holes are punched for ports into the device.

Applications of PDMS devices include microfluidic PCR [100, 101, 102]. While there
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are many benefits to such a material, including extensive supporting literature and

well-characterized surface chemistry, it did not meet our functional requirements for

an affordable, and therefore disposable, device. The relatively high thermal conduc-

tivity of the glass base of the device would also prevent adequate heating using out

method of direct, localized heating via infrared radiation, as described in the conclud-

ing remarks of Section 2.1.1. PDMS device are typically not suitable for use outside

of a laboratory, due to the flexibility of the PDMS, the fragility of the glass base,

the tendency for PDMS to collect dust and other particles, clouding the otherwise

optically clear material. Lastly, the compliance of PDMS would not have been com-

patible with our use of sample pressurization, a method for the suppression of bubble

expansion during heating described in Section 2.3.

We instead focused on rigid polymers compatible with more traditional manufac-

turing techniques and therefore more affordable and commercially feasible, including

polycarbonate (PC), cyclic olefin copolymers (COC), polypropylene (PP), and poly

(methyl methacrylate) (PMMA). While any of these options could have yielded a

functional device, PMMA was eventually selected for numerous reasons. Its optical

properties, shown in Figure 10, indicate high transparency at 1450 nm, which is the

wavelength of the infrared laser used in our temperature control system for rapid

heating of aqueous samples [99]. This transparency results in a maximum amount of

radiation delivered to the sample and avoids heating and subsequent deformation of

the substrate surrounding the reaction chamber. Additionally, high transparency to

visible light (92%), UV resistance, the quality of milled PMMA features, including

minimal burr formation, and the convenience of preparation by laser cutting moti-

vated the selection of this polymer as our microchip substrate [103]. A large sheet of

precision cast PMMA (Astra Products, Clarex Precision Thin Sheet, 1.5 mm) could

be quickly laser cut into pieces with the microchip’s final outer dimensions, ready for

micro-milling. Additionally, if desired, labels could be easily laser etched onto the
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microchip blanks and was used for identifying particular designs, batches, and dates

of fabrication.

2.2 Fabrication

While our finite element modeling provided a guide for designing our microchip with

the most suitable material and geometry, the fabrication of this device was a new

challenge. A method was needed to provide a microchip compatible with the unique

characteristics of infrared laser heating and our requirements for a simple and afford-

able microfluidic device.

Traditionally, glass and silicon have been the preferred substrates for these mi-

crofluidic platforms. Micro-scale features are fabricated using methods borrowed from

the semiconductor industry such as wet etching, LIGA, and DRIE, and require expen-

sive, hazardous, and slow processes that severely limit practicality, especially in the

early design phases [104]. As a lower cost alternative, polydimethylsiloxane (PDMS)

has become a ubiquitous polymer for devices made by soft lithography, as pioneered

by Dr. George M. Whitesides [105]. Still, as described in Section 2.1.4, this approach

requires tedious mold fabrication and yields devices insufficiently robust for applica-

tions outside of a laboratory. As the field of microfluidics matures, shifting towards

affordable, disposable, and commercially viable platforms, conventional materials and

the accompanying techniques are being replaced [65]. Instead, rigid polymers such as

PMMA, polycarbonate, and cyclic olefin copolymers (COC) are preferred and tech-

niques such as thermoforming, injection molding, laser etching, and micro-milling

have emerged as effective solutions.

A summary of the fabrication methods explored over the course of this project is

presented in Figure 11. Before developing the heat transfer model described in Sec-

tion 2.1.1, glass microchips with 550 nL reaction chambers (Figure 11a), fabricated

by our collaborators at the University of Virginia [39, 106], were used for early tests
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Figure 11: Several techniques were attempted for the fabrication of our PCR mi-
crochip. (a) Glass devices were fabricated by collaborators using chemical etching
and thermal bonding. (b) “Toner chips” were laminated from PET transparency
films printed with a multi-chamber design. (c) PMMA devices were laser etched with
side-by-side reaction chambers and bonded in boiling water. (d) An aluminum mold
was CNC machined (left) and used for injection molding of COC and PP devices
(right). Flashing and a trimmed portion of the runner can be seen at the perimeter
of the injection molded part. (e) Hot embossing was performed using a stainless steel
mold (left) that was heated above the glass transition temperature of the substrate
and pressed into the substrate to produce the microfluidic features (right).
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of our laser-mediated thermocycler. After discovering the need for a more insulating

substrate, a variety of techniques were used to produce a polymer microchip. An

early effort made use of polyethylene terephthalate (PET) transparency films with

selectively printed toner regions, which defined the microfluidic geometry and pro-

vided an adhesion interface. Films were laminated together to form a “toner chip”

[107, 108, 109], which can be seen in Figure 11b. Despite their remarkable simplicity,

these devices lacked the desired durability, offered limited choices of feature depths

and three-dimensional geometries, and presented too many questions regarding bio-

chemical compatibility with PCR. Experiments with laser etching, also known as laser

ablation or laser micromachining [110], shown in Figure 11c, proved to be fast and

affordable but incompatible with many materials and presented difficulties achieving

accurate depths and smooth surface finishes. Fabrication by injection molding [111]

is ideal for high-volume production of low-cost devices but suffers from numerous

drawbacks. Our experiments with this approach involved CNC machining an alu-

minum mold insert for the production of a four-chamber design using both cyclic

olefin copolymer (COC) and polypropylene resins. The mold and resulting device are

pictured in Figure 11d. In addition to challenges of difficult de-molding and exces-

sive warpage, the greatest hurdle was the time and cost investment for fabricating a

mold for each design iteration, a process not amenable to the prototyping process.

A similar method known as hot embossing [103, 112, 113, 114, 115, 116] was also

attempted (Figure 11e). A 303 stainless steel mold was first micro-milled with an in-

verse of the desired features. The mold and substrate were then loaded onto the lower

platen of a hot press and heated to just above the glass transition temperature of the

substrate polymer. Once heated, the substrate was positioned over the mold and

pressed at roughly 500 psi. Despite testing this method with a variety of materials,

including polycarbonate and three grades of cyclic olefin copolymer (Zeon Chemi-

cals), the aspect ratios of the reaction chamber geometry proved too high to achieve
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Figure 12: Microfluidic device features are micro-milled on a 3-axis CNC vertical
milling center using miniature tooling operating at spindle speeds up to 30,000 rpm.
(a) An aluminum fixture positions and retains the microchip substrate during the
milling process. (b) A close-up of microfluidic features (ports, fill channels, and 1 µL
reaction chamber) milled into 1.5 mm thick PMMA and cleaned with isopropanol,
deionized water, and compressed N2.

adequate filling of the mold. Damage to the mold, specifically plastic deformation of

the reaction chamber features, was also observed after repeated trials.

Direct micro-milling of microfluidic features, although uncommon, had been demon-

strated for microfluidic applications [117] and was found to be the most viable method

for fast turnaround (e.g., 5 min per device), wide-ranging dimensions, consistency, and

low cost.

2.2.1 Micro-milling

Fabrication of the microchip by micro-milling began with the conversion of the device

design to g-code, which was interpreted by a CNC machine to execute the desired

operations. Although this is typically performed with CAD-CAM software, code was

manually written for this application for complete control of all tool paths. The

code was loaded onto a 3-axis CNC vertical milling center (Haas, OM-1A) capable

of accurate positioning within 10 µm, repeatability of 6 µm, spindle speeds up to

30,000 rpm, and a 20-station automatic tool changer.

A custom aluminum fixture (Figure 12a) was CNC milled and used to align and

rigidly hold the substrate during fabrication, since small part deflections can easily

35



damage the fragile tooling. A protrusion was milled into the rear face of the fixture

to allow for highly repeatable positioning against the jaws of the precision vise of

the milling machine. A corner relief was pocketed into the top of the fixture to

allow repeatable positioning of the microchip. These features enabled rapid setup

without the need to zero the x and y-axes prior to milling. Although the fixture

provided highly repeatable positioning of the substrate, this accuracy was not critical

since internal alignment features were included in the microchip design, loosening the

tolerance on the outer dimensions of the device and diminishing the importance of

careful filtering of the substrate. Clamps were laser cut from 3 mm PMMA and hand-

tightened with m6 screws in a third-class lever arrangement, adequately retaining the

substrate during milling without marring the surface of the workpiece. Fixtures for

milling multiple microchips (e.g., 12 parts/run) were made for quickly generating large

batches of devices within single CNC runs. To maximize the density of the substrate

arrangement in the fixture, which in turn minimizes error due to deviations in height

of mill table and spindle over the fixture area, a clamping alternative was developed. A

sheet of 3 mm PMMA was laser cut with pockets featuring integrated flexure springs,

which allowed the operator to quickly load and unload blank microchip substrates

without fasteners and provided adequate retention during the milling process. After

milling, a wooden stir stick was used to gentry pry up the side of the chick, quickly

ejecting the devices without damaging the PMMA surfaces. This integrated spring-

based alignment and retention method was described in our early work developing

the first generation of open-loop, laser-mediated, microfluidic PCR instrumentation

[118].

Six different tools were used to produce the microchip features shown in Figures

12b and 17. Three miniature 2-flute carbide square end mills (Harvey Tool) with

diameters of 250 µm, 500 µm, and 3.175 mm were used for milling fill channels,

reaction chambers, clearance holes for retaining screws, respectively. Two carbide
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Figure 13: Surface profilometry was used record surface topology of three micro-
milled channels of depths 63.5, 127, and 254 µm. Average roughness of 340 nm was
measured.

drill bits (Drill Bit City) with diameters of 700 µm and 1.55 mm were used to drill

ports and alignment holes, respectively. A 0.0630 inch straight flute reamer was used

to bring the alignment holes to their final diameter for sliding over 1/16 inch dowel

pins. Prior to milling, each tool was zeroed to the top surface of the substrate. This

was accomplished by moving the tool in 0.0001 inch (2.54 µm) increments in the z -axis

towards the aluminum fixture and using a multimeter to detect electrical continuity

between the tip of the tool, which was rotating at 1,000 rpm, and the base of the

fixture [119]. The tool was then offset by the thickness of the substrate, which was

precisely measured using a dial probe indicator. Flood coolant was used during the

milling process to clear chips and cool the tool-substrate interface to avoid melting.

To clean the milled devices and prepare them for bonding, they were sonicated in

deionized water for 30 minutes, rinsed with with isopropanol and deionized water,

then dried with compressed N2.

As can be seen in Figure 12b, the micro-milling process leaves behind tool marks,

imparting a texture to the inner surface area of the device. In order to quantify this

surface finish, which can play a role in trapping unwanted bubbles as examined later

in this chapter, a surface profilometer (Taylor Hobson, Talysurf Surface Profilometer)

was used to measure surface roughness. Three channels with depths of 0.0025, 0.0050,
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and 0.0100 inch (63.5, 127, and 254 µm) were milled into a sample of PMMA using

a 250 µm diameter square end mill operating at 30,000 rpm and tilt-corrected profile

data was collected along the bottom of the channels (Figure 13). Roughness average

values, calculated as the average of the absolute values of the profile height deviations

from the mean depth, ranged from 230 to 440 nm, increasing monotonically with

channel depth, with an average of 340 nm, which is an order of magnitude lower than

reported values for micro-milled devices [65].

Micro-milling provided the ideal means for rapidly prototyping devices with unique

geometries well suited for our purposes. Figure 14 shows a variety of microchip de-

signs featuring linear and radial arrays of reaction chambers and three-dimensional

geometries, including spherical and rectangular prismatic chambers made possible by

different tooling options and milling operations. These multi-chamber designs were

useful for early higher-throughput testing of the biochemical compatibility of our mi-

crochips with PCR prior to implementing them with out laser-mediated thermocycler.

Still, there are a number of drawbacks to this approach. In addition to the previ-

ously mentioned issue of tool marks creating sites for air bubble entrainment, micro-

milling is not economical for high volume production. Another downside is that it

cannot be easily accomplished with a conventional milling machine due to the need

for relatively high spindle speeds required when working with sub-millimeter tooling;

the common maximum spindle speed is 3,000 rpm. A spindle speeder, also known

as a high-speed spindle attachment, is an option for achieving higher spindle speeds

with a conventional milling machine. Still, even with access to a machine with high

spindle speeds, the smallest features successfully micro-milled in the course of this

research were 125 µm wide channels used by a collaborator for on-chip DNA elec-

trophoresis. Dimensions below 100 µm could be exceedingly challenging due to the

limits of spindle speed, machine accuracy, and available tooling.
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Figure 14: Examples of PMMA micro-milled devices. (a,b) Linear and (c) radial
arrays were fabricated with various reaction chamber geometries, including (a) spher-
ical, (b) trapezoidal, and (c) elliptical with traditional uniform depth.

2.2.2 Thermal bonding

The micro-milled features of the microchip must be fully enclosed before the device

can be functional. The resulting two-layer microchip must be thermally and me-

chanically robust enough to withstand temperatures up to 95◦C without deformation

and endure repeated use without suffering delamination or other damage. An early

method for enclosing the channels / chamber made use of adhesive-backed 50 µm

thick heat-resistant polypropylene film typically used for sealing 96 well plates (Excel

Scientific, ThermalSeal). This was adequate for preliminary testing of the device in

a water bath PCR system but the adhesive did not possess the bond strength re-

quired for pressurizing the sample. Next, a 200 µm thick PMMA film was thermally

bonded as the enclosing layer. As with the adhesive film, the PMMA film aided in

efficient heating by providing thermal insulation and efficient cooling by allowing free

convection. Despite these advantages and its ability to remain bonded, the PMMA

film suffered catastrophic deformation when pressurized at the higher temperature

encountered for PCR (Figure 16). The best choice of enclosing layer was the same

1.5 mm thickness PMMA used for the micro-milled substrate.

Early experiments with thermal bonding made use of an aluminum clamping fix-

ture immersed in boiling water [95]. This technique was initially viable but, as with
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Figure 15: Microchips were thermally bonded using an aluminum bonding fixture
featuring alignment holes designed to align the microchip layers using 1/16 inch dowel
pins. Pressure is applied via two M6 screws, each precisely tightened with a torque
screwdriver for high repeatability, after which the fixture is heated to 170◦C for 30 min
then cooled to room temperature. (a) Exploded view of how the fixture microchip
layers were assembled for bonding. (b) Unbonded microchip layers mounted on the
fixture base.
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Figure 16: Enclosing the microchip features by thermal bonding of a 200 µm PMMA
film was effective until the introduction of sample pressurization, resulting in the
expansion and subsequent destruction of the reaction chambers when heated above
90◦C. Red food coloring was used for visualizing the aqueous sample.

the adhesive film approach, bond strength was not high enough to withstand pressur-

ization of the sample, a measure necessary for bubble suppression as described later

in Section 2.3. An improved thermal bonding method was developed and empirically

optimized to provide high bond strength without deforming the microfluidic features.

Although a variety of thermal bonding fixtures were fabricated and used with equal

success, including one made of tellurium copper and another with glass used at the

fixture-microchip interface for maximum optical clarity, the final bonding fixture was

machined from 1/2 inch thick 6061 aluminum with special care taken to ensure a

smooth surface finish, which was accomplished by CNC milling the inner faces of the

fixture and using a face milling routine with a very small step-over distance (e.g.,

10% of the end mill diameter), yielding a near mirror finish. The fixture, pictured in

Figure 15, features a set of holes reamed to 0.0630 inches in both sides, providing a

sliding fit for 1/16 inch diameter dowel pins, which correspond to an identical set of

holes that were drilled in both layers of the microchip. These alignment features serve

the dual purpose of accurately positioning the microchip layers in the bonding fixture

and positioning the bonded microchip on the the infrared laser system. A set of M6

tapped holes in the fixture base and corresponding clearance holes in the fixture top

accommodate M6 flanged socket head cap screws for applying bonding pressure.

The bonding process was performed by first loading recently cleaned and dried
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Figure 17: The two-chamber microchip design is comprised of two 20 × 60 ×1.5 mm
PMMA layers, one layer featuring a set of micro-milled ports, fill channels, reaction
chambers, alignment holes, and retaining holes, and the other layer featuring only
the alignment and retaining holes. Two thermocouples are positioned in close prox-
imity to the two 40 mm spaced reaction chambers and embedded during the thermal
bonding process to produce a finished device.

microchip layers onto the base of the fixture by sliding them over the alignment

pins. If thermocouples were to be embedded in the device, the microchip layers

were slightly spaced apart and the thermocouples were carefully positioned using a

10× loupe or magnifier visor to align the tip to approximately 500 µm from the

side of the reaction chamber in the y-dimension and centered with the chamber in

the x -dimension. This spacing was found to be close enough to the chamber to

capture temperature dynamics and far enough to avoid incomplete bonding between

the thermocouple tip and chamber, which can cause leakage during pressurization.

The top of the fixture was then mounted over the same alignment pins and the M6

screws were tightened to 0.340 ± 0.014 N·m using a vertical torque gauge screwdriver

(Seekonk, S0-48) for repeatable bonding pressure. The fixture was placed on a large

hot plate, heated to 170◦C for 30 min, then allowed to cool by natural convection to

room temperature.

Since there were concerns regarding thermal deformation of the microchip fea-

tures during bonding, such as partial chamber collapse due to thermal expansion and

in-plane drift, bonded microchips were examined via microscopy to verify repeatable,
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undeformed features. An alignment fixture was mounted to the stage of an inverted

microscope and used to image ten consecutively bonded microchips. Adobe Pho-

toshop was used to overlap images, adjust transparency, and note pixel differences.

These pixel values were converted to length values based on sensor specifications and

averaged. The maximum in-plane position variation of the microchip features was

calculated to be 15 µm.

Many microchip versions were fabricated with this micro-milling and thermal

bonding process. The final two-chamber design is shown in Figure 17. Each layer

began as a laser cut PMMA blank with dimensions of 20 × 60 ×1.5 mm. One layer

was micro-milled with two reaction chambers spaced 40 mm center-to-center, each

with the accompanying fill channels and ports, along with four 0.0630 inch alignment

holes (N.B. only two holes are used in practice for alignment) and 3.175 mm clear-

ance holes for M3 retaining screws. The other layer featured only the alignment and

retaining holes. Two thermocouples were embedded in the microchip for monitoring

the temperature of each reaction chamber. Thermocouples must be spaced away from

the chamber because a thermocouple tip located inside the reaction chamber would

adversely affect PCR due to reagents interacting with the metal surface thereby re-

sulting in either reduced efficiency or completely inhibition of the reaction [120]. An

additional problem with this configuration would is direct heating of the thermo-

couple tip by the infrared laser, biasing the measurement and preventing accurate

temperature control.

Due to the low cost of materials, short fabrication time, and risks of cross contam-

ination, our microchip was designed for single-use, after which the device is mildly

heated, thermocouples are removed for future use, ports are sealed with an adhesive

film, and the device is discarded as biohazardous waste. Still, a series of experiments

was performed to determine reusability in which a single microchip was used for ten
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serial PCR runs, with a cleaning step carried out by thoroughly flushing the reac-

tion chamber with isopropanol and deionized water and drying with compressed N2

between each run. Although measurements of the temperature profile demonstrated

that the thermal performance, including heating and cooling rates, was consistent,

end-point detection indicated that PCR yield monotonically decreases between the

first and fourth run and fails to produce a detectable amplicon concentration after

the fourth trial.

2.3 Bubble suppression

A commonly encountered obstacle in the field of microfluidics is the presence of bub-

bles in a microfluidic device, typically stemming from the dominance of surface tension

at the microscale. Bubbles are often introduced at the world-to-chip interface or are

the result of air trapped by surface imperfections [121, 122]. When performing PCR,

even small air pockets can expand during the heating process, as governed by Charles’

Law describing the isobaric expansion of gasses, Vf = Vi
Tf
Ti

where Vi and Vf are initial

and finial bubble volumes, respectively, and Ti and Tf are initial and final temper-

atures. For example, heating from 25◦C to 95◦C results in roughly 23% expansion

of bubble volume. When this occurs over multiple small air pockets, they expand

and coalesce to create large bubbles that can displace or completely purge the sample

from the microchip.

Even with the seemingly low surface roughness values measured for our micro-

milled features, bubble formation was a persistent issue during early testing of the

microchip. Published methods include physical bubble traps integrated into the de-

vice [122, 123], ultrasonic micro-degassing [124], and selectively permeable membranes

[125]. Degassing of the reaction chambers of a filled microchip was attempted using

a vacuum chamber to remove bubbles but surface tension in the microenvironment

prevented the extraction of the problematic air pockets. The addition of surfactants
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Figure 18: An acrylic pressure manifold was fabricated for delivering 40 psi to the
ports of the microchip, pressurizing the aqueous samples and in turn suppressing the
expansion of problematic air bubbles.

(e.g., Tween 20, PEG derivatives) for lowering the surface tension at the sample-air

interface during loading was also tested but did not prevent the formation of air pock-

ets. Several efforts were made to modify the surface of the reaction chamber prior

to bonding the device including parylene coating, flame polishing using a custom

nozzle on a butane torch, chemical polishing by masking the bonding interface and

exposing the micro-milled features to heated dichloromethane vapors, and polishing

using a defocused CO2 laser. Despite promising results from these efforts based on

visual inspection, none of them were successful in preventing bubble formation and

expansion.

Instead of preventing the initial entrainment of air bubbles, we shifted focus and

decided to simply prevent them from ever expanding. This was accomplished by

applying external pressure to the sample volume. Initial pressurization tests were

conducted using an inverted microscope (Nikon, TE2000) equipped with a 4×/0.2

NA objective (Nikon) and a custom microchip adapter allowing us to observe and

image bubble activity in the reaction chamber while heating from above the device
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Figure 19: Bubble suppression in our 1 µL reaction chambers was observed on an
inverted microscope by heating to 95◦C and imaging the microchip (a) before and (b)
after introducing 40 psi N2 to the ports of the microchip.

and delivering pressure to the microchip. After the sample was heated above 80◦C,

the threshold at which bubbles began to become apparent, a pressure regulator was

used to slowly increase pressurization until the bubbles were no longer visible, as

shown in Figure 19. This complete suppression was observed at a minimum pressure

of 40 psi. As reported in previous work [87], delivering 40 psi to the ports of the

device completely suppressed bubble expansion, allowing thermocycling to progress

unhindered. For use with the two-chamber microchip presented here, a pressure

manifold was machined from 0.375 inch acrylic featuring L-shaped internal pathways

that delivered 40 psi pure N2 from a 49 L storage tank to threaded luer fittings at each

end of the manifold to the ports of the microchip. A 1 mm thick, rectangular, laser cut

silicon gasket provided an airtight seal between the microchip and pressure manifold

(Figure 18). A set of 1/16 inch dowel pins align the microchip to the manifold, which

features four 6 mm holes to align the manifold-microchip assembly to the 30 mm cage

system housing the infrared laser components. Two M3 retaining screws secure the

microchip to the manifold and allow proper compression of the silicon gaskets. A pair

of 0.126 inch holes serve as ejector holes, allowing the manifold to be pressed onto

an aluminum block with 1/8 inch dowel pins which separates the microchip from the

pressure manifold for easy removal.
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2.4 Surface chemistry

One of the most vexing problems encountered when performing PCR at low reaction

volumes is surface chemistry-related inhibition. The higher surface-area-to-volume

ratio (SA:V), which is the surface area surrounding the reaction divided by the its

volume and is expressed here with units of mm−1, that results from the miniaturiza-

tion process magnifies the problem of reaction inhibition due to increased probability

of adverse interactions between reagents and inner surfaces of the microfluidic archi-

tecture. This problem was acknowledged in early efforts at miniaturization of PCR

[56, 126] and has been explored in the search for the most suitable substrates and

effective passivation methods [63, 127, 128, 129, 130, 68, 131, 132, 133, 134]. It has

been shown that the most deleterious factor is adsorption of the polymerase enzyme

to the surfaces in contact with the reaction mixture [132, 127], as well as adsorption

of intercalating dyes, such as Sybr Green, in the case of real-time PCR applications

[135]. Although some substrates appear to be more inert for PCR purposes, the effects

of adsorption appear to occur for most substrates and becomes more pronounced with

increasing SA:V. A commonly used reaction volume of 50 µL in a standard polypropy-

lene PCR tube exhibits a SA:V of about 1.3 while microfluidic devices are reported

with SA:V more than an order of magnitude higher [54]. Despite the recognition of

SA:V as a concern for the viability of microfluidic PCR systems, its effects had not

been modeled or quantified systematically.

Adsorption of the polymerase enzyme to microscale surfaces has been reported

qualitatively [128] to be a contributing factor in yield reduction at small volumes,

and this problem is compounded by the inherent increase in SA:V in microfluidic

devices. The specific adsorption of polymerase is commonly explained as a result

of hydrophobic interaction between the enzyme and substrate, where hydrophobic

substrates will be more likely to adsorb more enzyme [136, 129]. Recent studies by
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Sweryda-Krawiec et al. (2004) and Prakash et al. (2008) have demonstrated ad-

sorption by both hydrophobic and hydrophilic substrates, discounting wettability as

a standalone mechanism. There is a multitude of possible interactions, including

hydrophobicity/hydrophilicity [137, 138, 139], surface free-energy [140], electrostatic

attraction/repulsion [141, 142, 143], thermodynamics [144, 145], unique interfacial

tension between the protein and adsorbing surface [146], and relationship between pro-

tein penetration and steric hindrance from the structure of the protein and adsorbing

substrate [147, 148, 149]. It is worth noting that many authors have suggested that

the adsorption mechanisms themselves may not be fully understood [144, 147, 131].

Several methods have been used to counteract the inhibition of PCR by adsorp-

tion, which is depicted in Figure 20. Dynamic passivation agents (additives to the

PCR mixture) such as bovine serum albumen (BSA), polyethylene glycol (PEG),

and polyvinylpyrrolidone (PVP) compete with the PCR reagents for adsorption sites

on the surfaces of the reaction chamber [63, 127, 129, 130, 68, 131, 132, 133, 134].

Further, there is an emerging trend toward droplet microfluidics, in which discrete

aqueous volumes (e.g., 100 pL) are encapsulated in oil [150, 70, 151] with excellent

amplification results. These droplet systems require pneumatic droplet generators

and flow cytometers. Ideally, effects and advantages of passivation techniques such as

BSA and oil encapsulation could be quantified and/or combined with the simplicity

of practical, hand-pipetted volumes (e.g., 1–10 µL) in a disposable polymer chip.

In an effort to further the understanding of this problem and identify a solution ap-

plicable to our microfluidic device, we experimentally characterized and theoretically

modeled the adverse effects of high SA:V on PCR yield and the efficacy of common

methods of passivation to counteract surface-related inhibition. These results were

applied to the development of a protocol capable of performing PCR at a 1 µL re-

action volume with diagnostically relevant sensitivity and specificity, comparable to

conventional PCR in a tube. For this proof-of-concept for our microchip, we used
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Figure 20: Adsorption of polymerase to the surfaces of microfluidic devices in con-
tact with a PCR sample is a known contributor to reaction inhibition. The extent
of inhibition depends on the properties of the substrate material. (a) An untreated
hydrophobic surface will readily adsorb polar molecules such as DNA and especially
polymerase, leaving a limited quantity of available polymerase. (b) Dynamic passiva-
tion makes use of molecules such as BSA, PEG, and PVP to coat the surfaces of the
device, outcompeting the important reagents and minimizing inhibition. (c) Static
passivation methods make use of techniques such as covalent surface modification or
oil encapsulation to isolate the sample from the substrate and contain the sample
within a less inhibitory environment.
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consensus degenerate primers for pan herpes virus PCR and the Epstein-Barr virus

(EBV) as a template. EBV is a double stranded DNA virus belonging to the family

Herpesviridae. Nearly every human is infected with EBV before adulthood. Infection

early in childhood is usually asymptomatic, while delayed primary infection is typ-

ically manifest by the signs and symptoms of mononucleosis [152]. After infection,

the viral genome is retained for life at low concentration, and presents as illness in

higher concentration when the immune system is compromised [153, 154]. Therefore,

a threshold concentration between low and high viral loads is necessary for diagnostic

purposes. There is no consistently published threshold, but one study [155] observed

a median high viral load of 32,250 (range: 10,150–47,450) copies/mL and a low viral

load of 7,400 copies/mL. Thus, we set a threshold for this work of 3×105 copies/mL.

Any viable microfluidic PCR approach must achieve sensitivity and specificity

comparable to conventional PCR tubes. As discussed for the EBV virus, sensitivity

to a threshold viral load must be defined. Ideal specificity would involve only amplifi-

cation of the target region for which that particular PCR assay was intended, without

amplifying non-specific products. Here, discernment of the viral target fragments in

an electropherogram in the presence of a noisy human DNA background served as a

qualitative specificity assessment and comparison to conventional techniques.

2.4.1 Characterization of PCR inhibition

Low volumes (e.g., < 5 µL) can be problematic even with conventional, injection-

molded, polypropylene PCR tubes [49]. The lower limits of volume were examined

using conventional tubes by testing volumes of 5, 3, 2, and 1 µL (SA:V=3.1, 3.8,

4.5, and 5.7, respectively) with serial dilutions of EBV template. One set followed a

conventional recipe (Figure 21a) and the other used 0.2 µg/µL BSA for dynamic pas-

sivation (Figure 21b). Success rate decreased with decreasing volume and benefited

from the addition of BSA. None of the 1 µL reactions were successfully amplified.
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Figure 21: Epstein Barr virus detection results in conventional PCR tubes (a) with-
out BSA and (b) with BSA for a range of starting copies. Reaction parameters:
conventional PCR tubes, EBV template, BSA concentration 0.2 µg/µL, 40 cycles.

In addition to the challenges of preventing evaporation and recovering the sample

presented by the use of low volumes in conventional tubes, we suspected surface-

related inhibition might also play a greater role with decreasing volume. Results

for the BSA passivated samples substantiate this claim, with improved success rate,

notably for starting copies of 104–106 at volumes of 2–3 µL (SA:V=3.8–4.5). BSA also

improves success with constant SA:V at limiting starting copies: we measured a limit

of detection of approximately 5,000 starting copies without BSA, but 1,000 starting

copies with BSA. With starting copies ranging from 5×102–5×105, none of the 1 µL

reactions led to successful amplification, underscoring the importance of microfluidic

devices for amplification of these volumes.

With confirmation of the limits of conventional tube PCR at low volumes, we

performed a systematic study of the effects of material and geometry, specifically

SA:V, using a set of reactions in volumes of 50 µL in conventional PCR tubes. Stan-

dard control reactions were compared to a set of reactions in which higher SA:V

environments were created by adding segments of polymer capillaries (Paradigm Op-

tics) to the tube as shown on the left in Figure 22. The high SA:V environments
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Figure 22: Within conventional PCR tubes, segments of polymer capillaries were
submerged in 50 µL PCR reaction volumes (left) to quantify the effect of SA:V and
passivation on PCR yield (capillaries in tube not shown to scale). Filling of the
capillary segments upon submersion was confirmed using food coloring (right).

created by the addition of the polymer capillaries serve as a easily controlled ana-

log of the microenvironments of microlfuidic devices. Three different polymers, poly

(methyl methacrylate) (PMMA), polycarbonate (PC), and cyclic olefin copolymer

(COC) (Zeon Chemicals, Zeonor 1020R), were selected for their known use in the

field of polymer microfluidics and their compatibility with our microchip manufac-

turing techniques. These capillaries, which measured outer diameter, OD=750 µm

and inner diameter, ID=500 µm, were diced into 1 mm long segments.

Capillaries were diced manually using a custom-built assembly of razor blades

spaced with a 1 mm pitch. Segments were first visually inspected to ensure the

capillary was open and then submerged in food coloring to confirm filling of the

segments (Figure 22). Small deformation at the ends of the capillary, which was due

to pinching of the segments during the dicing process, was tolerated. Once diced,

the capillaries were counted and grouped into various batches to achieve a range of

SA:V values and loaded into PCR tubes. They were then cleaned by first adding

50 µL of DNase AWAY (Molecular BioProducts), centrifuging and sonicating for 1

hour, drying, and repeating the rinse process twice with nuclease-free water. PCR

mixtures were pipetted over the capillaries and spun down, ready for thermocycling.
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Capillary dimensions were used for calculations of surface area to determine the

number, N, of capillary segments to add to the reactions for a useful range of SA:V

values, where SA = N × [π(ID +OD)L] + [0.5π(OD − ID)2]. To determine the

SA:V of a PCR tube, we added a hemispherical base of radius, R1 (SA = 2πR2
1) to a

frustum, the portion of the conical PCR tube that lies between the hemisphere and fill

height, h, with radius, R2 (SA = π(R1 +R2)
√

(R1 −R2)2 + h2). For our PCR tubes

(Eppendorf, 951010006 Polypropylene PCR Tube, 0.2 mL), R1=0.92 mm, R2=1.92

mm, h=6.72 mm. For volumes less than 5 µL, the fill height falls below the top of

the hemispherical base and meniscus shape becomes particularly important. For this

SA:V calculation, tubes were filled with the low volume, taking care to center it at

the base, and the profile was captured using a microscope. The image was imported

into CAD software (SolidWorks) where the volume profile was traced and revolved

to produce a 3-dimensional representation. Small scaling adjustments were made

to ensure the correct total volume and the SA:V values were calculated using the

software’s measurement features. Although a 50 µL reaction without added capillary

segments has a SA:V of 1.3, representing the polypropylene surface contacting the

reaction, this was disregarded in our SA:V calculations, since this contribution is

roughly constant for each sample, increasing less than 5% of the total SA:V, due to

increased height of the liquid in the tube from displacement by the added capillaries,

with the maximum added capillaries. Therefore, effective SA:V values were used to

represent the contributions of only the substrates of interest, beginning with 0 for the

control reaction, 2.2 for 20 segments, 3.2 for 35 segments, and 5.7 for 63 segments.

Using this method of experimentally studying PCR yield as a function of SA:V,

we took the opportunity to examine the effects of dynamic passivation. In addition

to a baseline set of untreated PCR reactions, two additional conditions were tested:

1) BSA added to the reaction mix immediately prior to thermocycling and 2) BSA

incubated with the tubes and capillary segments overnight (∼12 hours) prior to the
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addition of the reaction mix and subsequent thermocycling.

For the initial study of the lower limits of reaction volume in convention tubes

(Figure 21), we used a consensus degenerate PCR reaction designed by the Centers

for Disease Control and Prevention (CDC) for the Herpesviridae family with a 605 bp

amplicon. The template DNA was a 4,495 bp plasmid containing an Epstein Barr

virus (EBV) genomic fragment and flanking regions of a 3,957 bp vector (Invitrogen,

pCR®4-TOPO®). Reaction preparation is described in Appendix A. Primers were

provided by the CDC and sequences are provided in Appendix B. The standard

45 µL master mix was divided into 4.5, 2.5, 1.5, and 0.5 µL aliquots, respectively,

and 0.5 µL of DNA was added to each to yield 5, 3, 2, and 1 µL volumes. 10 µL of

mineral oil was added on top of the reaction mixture prior thermocycling to prevent

evaporation, keeping the reaction volume confined to the base of the tube.

For characterizing PCR inhibition as a function of material and SA:V, λ-phage

amplification with a 500 bp amplicon was used with a 50 µL volume. For this, both

BSA and non-BSA containing reactions were prepared. For the non-BSA reactions,

a variation of the preparation described in Appendix A was performed to allow for

smaller volumes of template DNA where 48 µL of water was added to the premix

tube along with 1 µL of forward and reverse primers (Operon) (see Appendix B for

sequences). Purified λ DNA (Affymetrix) was diluted to 45.8 ng/µL and 1 µL was

added to the master mix. For the BSA containing reactions, 38 µL of water and

10 µL of 1 µg/µL BSA (Affymetrix) was used. For BSA incubated samples, tubes

were filled with a 30 µL BSA mixture, which was subtracted from the water volume

for the recipe described above, allowing the remaining PCR mixture to be simply

added to the incubated capillaries.

Thermocycling was performed in a conventional 48-well thermocycler (Bio-Rad,

Bio-Rad MJ Mini). As described in Appendix A, thermocycling parameters were

as follows: initial denature at 94◦C for 2 minutes, denature at 94◦C for 30 seconds,
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anneal at 68◦C for 30 seconds, extension at 72◦C for 30 seconds, and final extension

at 72◦C for 2 minutes with a total of 30 cycles.

Electrophoretic detection of PCR products was performed with an Agilent 2100

Bioanalyzer, which has a quantitative detection range of 0.1–50 ng/µL. The reac-

tions were considered “successful” if the signal-to-noise ratio of the electrophoretic

peak at the target length was greater than three. For successful reactions, the final

concentration of amplicon, or PCR yield (ng/µL), was determined from the electro-

pherogram with known standard markers. Although real-time detection would have

been preferable to provide quantitative PCR results, our methods required end-point

detection. We acknowledge that the use of end-point detection to quantify yield

is, at best, semi-quantitative and therefore was one of the primary limitations to

the reliability of our surface chemistry characterization efforts. Quantitative PCR

(qPCR) provides a more reliable measurement [156] and has been implemented for

related studies [126, 135, 134] but was not possible with our thermocycling methods.

Additionally, the known adsorption of dyes, such as Sybr Green [135], used for real-

time fluorescence monitoring would confound the results. The use of electrophoresis

for end-point detection has been used by others to present the effects of material

inhibition by reporting the ranges of yield [129]. While we caution that our PCR

yield measurements are best for relative trends, the Agilent Bioanalyzers results were

consistent and we report ranges of PCR yields for all characterization experiments.

2.4.2 Adsorption model

A theoretical model of adsorption-driven PCR inhibition was developed to comple-

ment the experimental characterization of the adverse effects on PCR yield resulting

from high SA:V for a variety of substrate materials. We assume that irreversible ad-

sorption of the polymerase enzyme is the cause of inhibition, as supported by previous

studies [132, 127]. To construct a model expressing PCR yield as a function of SA:V,
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we began with a conservation equation for polymerase availability, noting that

CFV = C0V − AS (8)

where CF is the free, or available, concentration of polymerase in solution (molecules/µL),

C0 is the initial polymerase concentration (molecules/µL), A is the surface concen-

tration of adsorbed polymerase (molecules/mm2), V is volume (µL), and S is surface

area (mm2). The surface adsorption of polymerase has been described by others

[136, 68] as

A ∝ ηCF
√
Dt (9)

where η is the adsorption efficiency (%), or the likelihood of an irreversible interaction

at the liquid-surface interface, for a particular microchip substrate, D is the diffusivity

(m2/s), and t (sec) is the duration that the reaction is in contact with the substrate

surfaces. The
√
Dt term represents the diffusion distance, d, of a particular particle

for a time t. For polymerase, we used an estimated D value of 1×10−10 m2/s as

reported in literature for an average protein [136, 157]. Substituting Equation 9 into

Equation 8 and rearranging, the free concentration of polymerase is given by

CF =
C0

1 + η
(
S
V

)√
Dt

(10)

where S/V is identically SA:V. At high SA:V, free polymerase concentration limits

PCR yield, such that CF ∝ Y . Therefore, PCR yield is expressed by

Y =
Y0

1 + η
(
S
V

)√
Dt

(11)

where Y0 is PCR yield when SA:V=0, which corresponds to the yield for the control

reaction. Because of the many factors contributing to the likelihood of irreversible

interaction between a protein and polymer surface, there is no deterministic method

for finding adsorption efficiency, η, from material properties. Instead, η values were

calculated using a least squares fit to our experimental data sets for each substrate
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of interest. Therefore, η serves as a collective empirical term for the probability

of an irreversible interaction between the polymerase enzyme and polymer surface as

commonly occurring in microfluidic PCR devices. This term provides a valuable basis

for comparing materials and predicting geometry effects but has several limitations,

including the assumptions of fully diffusive transport, that polymerase is the only

adsorbed reagent, and that adsorption is irreversible and completely inhibitory to

enzyme function. In addition, the model does not account for surface roughness, the

effect of temperature fluctuations on diffusivity, or the effects of passivation. The

model could benefit from a larger sample number and greater range of SA:V, since

the experiments presented here were limited to range of ∼1-6 while some microfluidic

devices approach higher values (e.g., SA:V=22 [158]. These high SA:V devices, in all

reported experiments, require passivation techniques to obtain reasonable yields.

This adsorption model was also used to compute the critical length, d, derived from

the diffusion length calculation, at which wall interactions become dominant. Using

our values for diffusivity of polymerase (1×10−10 m2/s) and a time of 2 hours (7200 s),

we note the critical length, d=800 µm. For devices with reaction chamber dimensions

below this critical length, we predict enzyme depletion due to wall interaction will

significantly affect yield unless counteracted with passivation measures.

Results from the capillary segment experiments are shown in Figure 23. By vary-

ing the SA:V from 0 to 5.7, we showed a decaying PCR yield with increasing SA:V in

the absence of passivation. The capillary segments used have dimensions less than the

diffusion distance, d, thus we observed strong dependency of yield on SA:V. Using a

least squares fit to this data, we determined adsorption efficiency, η, for PMMA, PC,

and COC to be 0.91, 0.38, and 0.31, respectively. PC and COC give similar results

(p>0.05), and PMMA is the worst option amongst these three material candidates

since it fails at SA:V=5.7, while COC and PC can work at this high SA:V. This con-

clusion is in agreement with the assessments found in literature [129]. In this work
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Figure 23: Experimental PCR yield ranges (bars) in the presence of PMMA, PC, and
COC capillary segments versus SA:V for (a) untreated PCR solution as well as for
dynamic passivation using BSA added to the PCR solution (b) immediately prior and
(c) 12 hours prior (overnight incubation) to thermocycling. Modeled yields (lines)
are shown for the untreated case in part (a). Reaction parameters: conventional
PCR tubes with capillary segments, 45.8 ng of λ template, 30 cycles, 50 µL total
volume, control has no segments, BSA concentration 0.2 µg/µL (when applicable),
n=2. *Surface area of polypropylene PCR tube neglected

we have not tested nor determined η values for other microfluidic materials, such as

PDMS, polyester, glass, or silicon.

The yield at high SA:V (e.g., >3) is improved and stabilized by the addition

of BSA, especially so when the sample is incubated with BSA before loading the

reaction. This stabilization of yield makes PCR viable at SA:V as high as 5.7 for all

substrates tested in this work.

The adsorption model (Equation 11), shown superimposed over experimental data

in Figure 23a, predicted η values for PMMA, PC, and COC to be 0.91, 0.38, and

0.31, respectively. Overall, the adverse effect of increasing SA:V is apparent in the

decreasing yield for each substrate. COC appears to be the most compatible polymer,

with PC displaying slightly lower but not significantly different (p>0.05 at each SA:V)

final concentrations. PMMA was the weakest performer.

It must be noted that this theoretical model takes into consideration a only a
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limited number of variables. As it stands, the model can serve as a tool for character-

ization purposes, using SA:V, substrate-dependent adsorption efficiency, initial con-

centration of polymerase, diffusivity of polymerase, and duration of reaction/chamber

interaction to determine the suitability of a particular material for use as a microflu-

idic substrate. By fitting this diffusion model, using the method of least squares,

to our empirical observations of PCR yield for reactions performed in three polymer

environments (PMMA, PC, and COC), we have been able to calculate corresponding

adsorption efficiencies, η, a metric we created to represent the tendency for molecules

to irreversibly adsorb to a particular material. Additional efforts towards developing

the model into a deterministic tool are discussed later in Section 5.2.1.

2.4.3 Microchip passivation

Although our study of reaction inhibition as a function of the three most common

rigid polymers used for microfluidic substrates revealed that PMMA was the least

suitable for PCR, we proceeded to test our PMMA microchips (SA:V=7.0) with

both dynamic passivation via BSA and two static passivation methods: 1) using a

sample loading technique we developed involving mineral oil and 2) using covalent

surface modification of PMMA via silanization. These passivation strategies were

first tested using our λ-phage amplification and compared to control reactions to

determine whether our choice of PMMA as a microchip substrate was viable and, if

so, proceed to apply the optimal protocol to test for sensitivity and specificity with

a more challenging reaction.

Microchip reactions were thermocycled using a custom-built, automated water

bath system (Figure 24). Three 1 L beakers of water were maintained at the denatur-

ing, annealing, and extension temperatures using hot plates with temperature probes

for feedback control (Corning, 6795-420D). Microchips were transferred between the

water baths in an aluminum microchip holder, which was shuttled on a 2-axis gantry
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Figure 24: An automated water bath thermocycler was built for testing our mi-
crochips with different passivation methods and PCR reaction to confirm compatibil-
ity and assess performance such as limit of detection. (a) A 2-axis gantry system was
positioned over three 1 L beakers, each maintained at one of the three PCR temper-
ature setpoints for denaturation, annealing, and extension. (b) The carriage shuttled
a microchip holder between beakers, pausing at each beaker to allow submersion of
the microchips for specified hold times.

system built using LEGO Mindstorms NXT as well as added materials such as kevlar

thread for a pulley system used to raise and lower the microchip holder into and out of

the water baths. A LabVIEW program served as the user interface, allowing control

o. Hold times were extended to ensure thermal equilibrium as follows. For the crucial

transitions to annealing (94◦C to 68◦C) and extension (68◦C to 72◦C) temperatures,

1.5 minutes of ramping time was determined as more than adequate using a micro-

thermocouple (Physitemp Instruments, T-240C) inserted into the reaction chamber.

For the less critical denaturing transition (72◦C to 94◦C), 30 seconds of ramping time

was used to quickly reach denaturing without risk of enzyme degradation, bubble

formation, or material softening.

Following thermocycling, we inspected all microchips for air bubble entrainment

in the reaction chambers. We discarded roughly 48% (19 out of 40) of the microchips

when air bubbles were visible by naked eye, since preliminary studies showed that

PCR was 100% (15 out of 15) inhibited by their presence, most likely due to the

disruption of the oil passivation layer by the bubble, allowing direct contact between
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Figure 25: A technique for loading PCR samples into our polymer microchips (shown
in Figure 17) was developed in which a standard pipette tip is loaded with 1 µL PCR
sample flanked by 2 µL volumes of mineral oil.

the reaction and inhibiting polymer surface.

2.4.3.1 Mineral oil loading

A new approach for loading aqueous samples into static reaction chambers was devel-

oped in which the sample is loaded as a plug between two volumes of mineral oil, filling

the ports and fill channels and thereby eliminating dead volume. This technique was

performed by first loading 2 µL of mineral oil into a pipette tip using an adjustable

micropipette. The pipettor volume was increased to 3 µL and, after carefully bringing

the oil interface to the end of the pipette tip, 1 µL of PCR solution was loaded. The

pipettor volume was then increased to 5 µL and the remaining 2 µL section of the

pipette tip was filled with a second flanking plug of mineral oil, as pictured in Fig-

ure 25. This 5 µL volume was loaded into the microchip, aligning the PCR solution

to the reaction chamber. Excess mineral oil overflow was wiped away with a lint-

free wipe. Upon visual observation at 20× magnification, the oil appeared to form a

smooth boundary between the sample and chamber walls, suggesting encapsulation

of the sample.

Confocal imaging was used to examine the extent of sample encapsulation achieved

by the mineral oil loading technique. Fluorescent mineral oil was made using acety-

lated low density lipoprotein, labeled with 1,1’-dioctadecyl–3,3,3’,3’-tetramethyl-indocarbocyanine

perchlorate (Biomedical Technologies Inc., DiI-Ac-LDL). 5 mL of mineral oil was
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added to 200 µg of fluorophore and vortexed, yielding a 40 µg/mL solution. A mi-

crochip was specially made for this experiment. It featured three reaction chambers

and, instead of the typical 1.5 mm thick layer thermally bonded to the enclose the re-

action chambers, a 200 µm PMMA layer was used to allow for imaging of the reaction

chambers to accommodate the limited working distance of the microscope objective.

The microchip was filled using the same loading process previously described using

the fluorescent mineral oil and 1 µL of PCR buffer solution to serve as the sample.

It was then positioned on the stage of a confocal microscope (Zeiss, LSM 510). Each

chamber was imaged with a tile scan of z-stacks to capture the three-dimensional

distribution of mineral oil. Acquisition settings were configured for the DiI fluores-

cent probe, including laser excitation at 555 nm, and z -stacks were set for 120 slices

over the full chamber depth, yielding a z -stack interval of roughly 6.4 µm. Result-

ing confocal images of three identically filled chambers are shown in isometric view

in Figure 26. The three-dimensional reconstructions of the mineral oil distribution

indicate partial passivation, separating the sample from the microchip substrate in

some areas but leaving some regions exposed to the polymer. Another possibility is

that although complete sample encapsulation occurred, the layer of mineral oil sur-

rounding the sample was too thin in certain regions for enough fluorescent molecules

to produce a detectable signal.

2.4.3.2 Hydrophilic and hydrophobic coating

In addition to the oil loading technique, covalent surface modification via silanization

was implemented as another countermeasure to geometry and material-dependent

PCR inhibition [159, 160, 161, 162]. Specifically, two hydrophilic coatings, (3-aminopropyl)

triethoxysilane (Sigma-Aldrich, 440140) and mPEG-triethoxysilane (Laysan Bio, MPEG-

SIL-1000-1g), and two hydrophobic coatings, n-propyl-triethoxysilane (Sigma-Aldrich,

539317) and isobutyltriethoxysilane (Sigma, 699713), were selected for testing. It
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Figure 26: Confocal imaging was used to determine the nature of the passivation
provided by our oil loading technique. Mineral oil was treated with a fluorescent probe
solution and used to load 1 µL water samples into our microchip. Three-dimensional
reconstructions of image stacks collected for three separate reaction chambers loaded
with the identical technique indicate only partial passivation by the mineral oil and
reveal trial-to-trial variation in oil distribution.

was hypothesized that hydrophilic coatings, when paired with the direct loading of

samples into the microchip, would minimize the occurrence of surface energy-related

adsorption of PCR reagents and in turn enhance PCR yield. Hydrophobic coatings

would be paired with the oil loading method to ensure complete encapsulation of the

aqueous sample in mineral oil, preventing and surface chemistry-related inhibition.

All of the silane solutions were purchased in liquid form, ready to use, with the

exception of the 1,000 Da mPEG-silane, which was stored in powder form. 100 µL

aliquots were prepared by first combining 95 µL with 5 µL deionized water to make

the PEGylation buffer. Then 5 mg of mPEG-silane was added to the buffer and the

solution was vortexed until all powder was dissolved.

The coating process was performed prior to thermal bonding. After cleaning the

microchip layers with ethanol, deionized water, and compressed N2, each side was

masked using general-purpose labeling tape to expose only the regions where the

micro-milled features were located, coating only the surfaces that will later contact

the sample and leaving the rest of the interfacial area uncoated to ensure proper bond-

ing. Functionalization was performed as shown in Figure 27, in which the masked
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Figure 27: Surface modification of our PMMA microchip was performed by first
plasma treating the surface to expose hydroxyl groups then incubating with silane
solution to coat the device, changing surface properties and potentially improving
biocompatibility with PCR. Diagram adapted from [161].

layers were plasma treated (Harrick Plasma, PDC-32G) for 2 minutes to expose hy-

droxyl groups then immediately treated with the silane solutions by pipetting roughly

10 µL onto the exposed regions. The microchip layers were then incubated at 70◦C

for 2 hours. The tape used for the mask was removed and the microchip was bonded

according to the standard method described in Section 2.2.2. Early experiments with

the coatings revealed that the amine-modified surface via (3-aminopropyl) triethoxysi-

lane was opaque upon drying and therefore unsuitable for use with our microchips

since the coating would both impede infrared heating and prevent optical access re-

quired for applications involving real-time fluorescence monitoring. We proceeded

with the remaining three formulations.

To determine whether the silane coatings would survive the thermal bonding pro-

cess, coated microchip layers were loaded onto the unassembled sides of the bonding

fixture, placed on the hot plate, and subjected to the same temperatures experienced

during the bonding process but without the assembly and clamping of the fixture,

keeping the coatings exposed. Following this heating process, the microchip layers

were allowed to cool and 5 µL water droplets were deposited onto the coated regions.

Comparison of contact angles from before and after heating indicated that the silane

coatings withstood the bonding temperatures, validating the coating method for use

with our microchips.
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A set of five 8-chamber microchips were used for testing our microchip passiva-

tion methods. For each microchip, four of the reaction chambers were used with-

out BSA and four without BSA. Two of the microchips were uncoated, one loaded

with PCR solution only and other other loaded with the mineral oil loading method.

The remaining three microchips were coated using the silane treatments: mPEG-

triethoxysilane (hydrophilic), n-propyl-triethoxysilane (hydrophobic) and isobutyltri-

ethoxysilane (hydrophobic). The hydrophilic microchip was loaded with PCR solu-

tion only and the hydrophobic microchips were loaded using the mineral oil loading

method. It was discovered during the loading process that the hydrophobic coatings

prevented injection of the aqueous samples due to the non-wettable surfaces; there-

fore, the only covalently modified microchip tested was the PEGylated device, leaving

three out of the initial five microchips for testing.

For a reliable test of the efficacy of these passivation methods, λ-phage ampli-

fication was used. For the non-BSA preparation, see Appendix A. For the BSA

containing reactions, the same protocol was used except the volume of water added

was reduced to 29 µL and 15 µL of 1 µg/µL BSA was added to the premix prior to

vortexing. The 5 µL aliquots were then used for loading into the microchip. In the

case of the mineral oil loading approach, only 1 µL was needed. With the mineral oil,

roughly 3 µL were required for filling not only the reaction chamber but also the fill

channels and ports. Our custom water bath thermocycler was used with hold times

of 1, 2, and 2 minutes for denature, anneal, and extension, respectively, for 30 cycles.

The PCR yields for λ-phage amplification in our three tested microchips are shown

in Figure 28 compared to 50 µL control reactions in conventional PCR tubes with

and without BSA. As before, PMMA at high SA:V (in the microchip) without pas-

sivation consistently fails and has a low but consistently detectable yield with BSA.

The favorable effect of the mineral oil loading method on PCR yield compared to

the untreated microchip without oil was significantly different (p<0.05). Despite the
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Figure 28: PCR yield for various passivation methods in PMMA microchips relative
to control reactions in PCR tubes with and without BSA. Three microchips were run
in a custom water bath thermocycler to test the efficacy of an oil loading technique
as well as a PEG-silane hydrophilic coating compared to an untreated microchip.
Reaction parameters: control in conventional PCR tubes, microchips in PMMA with
SA:V=7.0, λ template (45.8 ng in controls, 25 ng in microchips), 30 cycles, BSA
concentration 0.3 µg/µL, n=4.

benefits of BSA as a dynamic passivation agent observed from experiments in con-

ventional tubes with either low volumes or high SA:V environments (Figures 21 and

23), the exclusion of BSA improved yields for both mineral oil loaded samples and

the 50 µL control. This seems to agree with what others have posited [126], that

BSA effects can be deleterious. As the effects of BSA on the reaction chemistry and

wall interaction are complex [163, 164, 133], we are reluctant to extend the model to

account for it. Suffice to say that the η term and Y0 terms would at least be affected.

Since oil encapsulation performed the passivation function, BSA addition is there-

fore not recommended. Although comparable performance was observed for the hy-

drophilic microchip when used with a BSA containing PCR solution, greater variabil-

ity in PCR yield indicated a less reliable passivation method. Thus, the combined

benefits of relatively high PCR yields and zero dead volume motivated our selection

of mineral oil loading without BSA as the optimal passivation strategy for our PMMA

microchips.
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Figure 29: To assess sensitivity, PCR yield versus starting copies of Epstein Barr
virus using 1 µL PMMA microchips. Limit of detection is 140 starting copies, equiv-
alently 1.25×10−7 ng/µL or 3×105 copies/mL. Reaction parameters: EBV template,
30 cycles, n=3.

Having established the basic viability of our microchip when paired with an effec-

tive passivation method, we proceeded to test the limits of performance when faced

with a more challenging amplification reaction. Consensus degenerate PCR was se-

lected for these purposes and the previously described EBV reaction was run in our

microchips. Refer to Appendix A for a detailed protocol for reaction preparation.

The virus template DNA was added from a set of serial dilutions, which was pre-

pared with concentrations ranging from 1.25×10−3 ng/µL (1.4×106 copies/reaction)

to extinction in 10× dilution increments, to assess sensitivity.

As detailed in Appendix A, conventional thermocycling parameters for EBV am-

plification were as follows: initial denature at 94◦C for 2 minutes, denature at 94◦C

for 15 seconds, annealing at 48◦C for 30 seconds, extension at 72◦C for 30 seconds,

and final extension at 72◦C for 7 minutes with a total of 40 cycles. For the microchip

reactions, the water bath system previously described was used with hold times were

1, 3, and 2 minutes for 30 cycles.

Using the PMMA microchip (volume=1 µL, SA:V=7.0) with optimal passivation

of oil without BSA, we performed amplifications of an EBV genomic fragment using
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Figure 30: To assess specificity, electropherograms of PCR products and sizing mark-
ers for amplifications of 106 copies, or 1.25 ng, of Epstein Barr virus with 2.5 ng of
background human DNA for (a) 5 µL reaction volumes in a conventional PCR tube
and (b) 1 µL microchip. The target amplicon of 605 bp is detected in both, but the
specificity (indicated by the presence of non-specific products) is superior for the mi-
crochip. One of two identical results is shown. Reaction parameters: EBV template,
30 cycles.

pan herpes virus consensus degenerate PCR with a serial dilution of template from

0 to 106 starting copies to determine the sensitivity of this optimized microfluidic

device. The results with corresponding starting concentration and yield are shown in

Figure 29. The samples were successfully amplified down to the threshold of ∼100

starting copies, near the limit of detection of conventional thermocycling.

In order to assess specificity, 5 ng/µL human DNA was introduced to the reaction

mixtures to represent host, or background, DNA. A comparison of a 5 µL conventional

reaction in a tube and a 1 µL reaction in our microchip was performed, each containing

2.5 ng of host DNA and 1.25 ng of EBV template.

To assess specificity of the 1 µL PMMA microchips, we amplified 106 starting

copies, or 1.25 ng, of EBV template in the presence of 2.5 ng of host human DNA.

For comparison, we amplified the same quantity of template and host in a 5 µL

conventional PCR tube. The resulting electropherograms of the PCR products are
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shown in Figure 30. Non-specific products and primer dimers were easily observable

in the 5 µL sample run in a conventional PCR tube. The sample run on the microchip,

on the other hand, yielded a much cleaner electropherogram, free of undesirable peaks.

Qualitatively, the microchip exhibits improved specificity.

In order for the molecular biology community to embrace new technologies such as

microfluidic PCR, the sensitivity and specificity capabilities for the most challenging

and relevant reactions must compare or exceed those of conventional techniques while

offering an easy-to-use, low-cost system. We have demonstrated a microfluidic PCR

approach informed by modeling and experimental characterization of the common

problem of inhibition by surface adsorption and factors that affect it: substrate ma-

terial, duration, diffusivity, surface area-to-volume ratio, and passivation technique.

From this, we have implemented optimal passivation for a 1 µL reaction volume in a

polymer microchip that we fabricated, providing a 50× volume reduction compared to

conventional methods with comparable or improved sensitivity and specificity. Unlike

the many microfluidic PCR devices that require higher concentrations of polymerase,

which is the most expensive PCR reagent, we maintain the conventional polymerase

concentration of 0.025 U/µL to provide true cost reduction. The application of our

microchip to the detection of Epstein Barr virus using pan herpes virus consensus

degenerate primers, as routinely used by the CDC Pathogen Discovery Program, Di-

vision of Viral Disease, and our demonstrated ability to operate at the same limit

of detection and specificity as conventional methods makes the case for the viability

of our microchip, taking a step closer to massive reductions in the cost and labor

involved in pathogen screening and countless other PCR applications.

2.5 Conclusions

This chapter described the design, fabrication, and testing of a low-cost microfluidic

device for rapid PCR applications such as viral screening. Towards the design of our
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device, a finite element model was developed and validated, allowing for the iterative

simulation of various geometries and materials to arrive at a 1 µL reaction chamber

design suitable for efficient radiative heating, as required for performing thermocycling

with minimal power consumption and maximal scaling potential.

With an established design, numerous fabrication methods were tested, including

hot embossing, injection molding, and laser ablation. Ultimately, a direct micro-

milling approach was developed that made use of a CNC machine equipped with

a spindle capable of high enough speeds to operate sub-millimeter tooling. This

technique was amenable to our three-dimensional reaction chamber geometry and

allowed for fast prototyping of new designs, unlike most micro-fabrication methods

that either involve numerous steps with expensive and sometimes hazardous chemicals

or require the separate fabrication of a mold.

For the optimal performance of our device, problems of bubble formation and sur-

face chemistry-related inhibition needed to be addressed. A system for pressurizing

our samples during instrument operation suppressed the expansion of small pockets

of trapped air observed at the near-boiling temperatures required for PCR thermocy-

cling. Next, the commonly encountered issue of adsorption of molecules to the inner

surfaces of the microfluidic features, which can partially or fully inhibit the relevant

biochemical reaction, was addressed by first conducting a systematic characterization

of the effects of various surface-area-to-volume ratios and various polymeric materials

on PCR yield. A theoretical model based on diffusive transport was developed in par-

allel with the experimental work, laying the groundwork for a deterministic approach

for predicting inhibition effects as a function of geometry and material properties.

We then implemented a number of methods designed to counteract the adsorption-

driven inhibition, including dynamic BSA passivation, covalent surface modification

via silane conjugation, and loading of samples using mineral oil encapsulation. The

mineral oil loading technique proved to be most effective and offered the added benefit
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of eliminating dead volume. This approach enabled the first microfluidic consensus

degenerate PCR with the amplification of EBV by pan herpes virus PCR as a proof of

concept. Our limit of detection was shown to be comparable to conventional tubes,

with 140 starting copies or 3×105 copies/ml regarded as the accepted sensitivity

threshold for diagnostic purposes [155] These discoveries relating to the modeling,

fabrication, and optimization of our microchip yielded the core enabling feature of a

rapid, low-cost, microfluidic PCR platform.
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CHAPTER III

LASER-MEDIATED THERMOCYCLER

The polymerase chain reaction is a temperature-driven process. Therefore, fast and

reliable temperature control is an essential component of any high performance PCR

system. This chapter describes the development of an infrared laser-mediated method

of controlling the temperature of a microfluidic sample while providing fast ramping

and independent temperature control of multiple reaction chambers to achieve ther-

mal multiplexing, a novel concept introduced earlier in Section 1.5. We first discuss

the methods for delivering radiation to our microfluidic reaction chambers, including

the distribution, alignment, and modulation of our laser output. Next, the temper-

ature measurement system used for feedback-driven control and the associated cali-

bration process is described. Finally, both open-loop and closed-loop configurations

are implemented for applications in gene expression measurement and multiplexed

virus detection. The core of our two-channel thermocycler is shown in the simplified

diagram of our system depicted in Figure 31.

3.1 Optical system

The evolution of radiative heating for microfluidic PCR from its origins, in which an

incoherent, broadband source was used to generate large focal spots on glass microflu-

idic devices, to a more precise and scalable approach using a coherent, monochromatic

source was driven by the design and construction of an optical system capable of ef-

ficient and controlled delivery of radiation to our microchip.

Two basic optical system configurations were developed, each shown in Figure 32.

With a two-chamber approach selected as the proof-of-concept for our technology,

we needed a way to deliver radiation equally to two samples simultaneously. Initial
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shutters
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Figure 31: A simplified diagram of our two-channel temperature control system.
Laser diodes served as the source of infrared radiation and solenoid shutters mod-
ulated the radiation to provide independent temperature control of each reaction
chamber. (Optics, pressurization, and temperature sensors excluded for clarity.)

design efforts considered optical elements such as beam splitters and micro mirror

arrays to distribute the infrared radiation but high component costs and excessive

attenuation eliminated these options. Instead, a simple approach was adopted in

which the beam was first collimated, and in the case of a single source, divided using

a lens array, then modulated using miniature solenoids acting as optical shutters.

The single laser configuration was first developed, as shown in Figure 32a, in which

a collimating lens and lens array are used to generate two equally sized focal spots

spaced 1 mm center-to-center (Figure 32b) and aligned to adjacent reaction chambers

with the same spacing. After determining the relationship between chamber spacing

and maximum temperature difference, relevant for operating at different annealing

temperatures simultaneously as required for thermal multiplexing, a second config-

uration was developed in which two laser sources were used, shown in Figure 32c.

As explained in the discussion of chamber spacing covered in Section 2.1.3, the use
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Figure 32: The basic optical systems for two-chamber, laser-mediated thermocycling
used collimation and modulation optics for manipulating our infrared sources. (a) For
closely-spaced reaction chambers, a single source can be collimated and evenly divided
into distinct focal spots using a lens array. (b) The transformation of the beam profile
from its passage through the lens array. (c) For widely-spaced reaction chambers, as
required for sufficient thermal isolation, two laser sources were implemented with
mirrored optical elements.
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of side-by-side 30 mm cage systems to mount and align the optics required for each

channel dictated the 40 mm center-to-center spacing of the reaction chambers.

3.1.1 Laser source

With the goal of efficient, localized radiative heating of aqueous samples, an infrared

laser was selected as an ideal source. This offers numerous advantages, including

the ability to finely focus and manipulate the beam and the ability to more easily

control the level of interaction between the radiation and the instrument components

due to the specificity of the laser’s narrow spectral bandwidth. As mentioned in

Section 2.1.4, a wavelength of 1450 nm was selected for both its commercial avail-

ability and affordability and, more importantly, it corresponds to an absorption peak

of water while absorption by our microchip substrate, PMMA, is negligible, allowing

efficient delivery of radiation without heating and damaging the microchip.

The modeling presented in Section 2.1.1 assisted in not only the design our mi-

crochip but also the selection of our laser source. Based on our combined calculations

of optical power absorption and finite element heat transfer simulations, we chose

a 600 mW 1450 nm laser diode (Hi-Tech Optoelectronics, LMD-1450-600-33) as the

best suited source for adequate power and affordability (e.g., $100 per laser diode).

The laser features a rugged TO-3 packaging with a flange featuring two holes, which

were used to rigidly mount the laser to a heat sink with thermal paste applied at

the interface. The diode is wiring in an anode grounded configuration and powered

using a constant current laser diode driver (Wavelength Electronics, PLD5K-CH),

which can supply up to 5 A and achieves drive current stability of <100 ppm, which

is equivalent to <0.3 µA variation when operating at our maximum current draw of

3 A. This complied with the maximum tolerable transient reverse current of 25 µA

for our laser diode. Power consumption amounted to roughly 3.25–6.5 W, an order

of magnitude less than typical Peltier-based thermocyclers.
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Initial testing for our laser with an early polymer microchip design provided a

benchmark for temperature ramping rate of 60◦/sec, as plotted in Figure 33. This is

more than an order of magnitude greater than the maximum ramping rates of con-

ventional thermocyclers (e.g., 3◦/sec), an improvement that can be attributed to the

direct nature of energy transfer via radiative heating and the smaller thermal mass of

our sample compared to the thermal block that must be heated/cooled for the indi-

rect temperature control of larger sample volumes encountered with the conventional

Peltier-based systems. While the faster ramping achieved using our infrared laser

system does result in shorter overall runtimes, the benefit from ramping alone is not

significant due to the relatively greater time commitment for temperature holds com-

pared to the transition periods over the course of 30 to 40 cycles. There is potential

for greater time reduction by reducing the hold times recommended for conventional

instrumentation, since the smaller thermal mass of our 1 µL sample reaches its set-

point faster than the larger volumes used with conventional systems, especially since

they measure the temperature of the thermal block and most likely allot extra time

during the holds for the sample to come into equilibrium with the block. Still, we see

the enhanced speed of our system as only a minor advantage, whereas the efficiency

and controllability of our laser-mediated thermocycler are the key features enabling

our innovations in the field of PCR instrumentation and more broadly in applications

of microfluidic temperature control.

Each laser diode, which exhibited beam divergence of approximately 45◦ × 11◦

full width at half maximum (FWHM), was focused using an aspheric lens (Thorlabs,

A230TM-C) with a focal length of 4.51 mm, numerical aperture (NA) of 0.54, and an

antireflective (AR) coating designed for the 1050–1620 nm wavelength range. These

collimating lenses were adjusted to positions outside of the plane of collimation to

achieve slight focusing of the beam in order to approximately match the focal spot

to the 500 µm × 2.75 mm dimensions of the reaction chamber.
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Figure 33: The fastest recorded ramping rate achieved with our infrared laser heating
system was 60◦C/sec when heating a 200 nL sample volume in an early PET microchip
design.

For the two-chamber, single laser system, an injection molded lens array with

1 mm interlens spacing was used as well[98]. This served the purpose of efficiently

distributing the single beam to both chambers. The beam profile before and after the

lens array can be seen in Figure 32b.

3.1.2 Alignment

As discussed later in Section 3.3, there are two versions of our instrument, one for

open-loop operation and the other for closed-loop operation. The core optical system

for mounting, aligning, and focusing our infrared lasers is shared by both systems but

the proceeding discussion pertains to the closed-loop configuration due to its greater

complexity and relevance to the overall goals of this research.

Basic alignment of the optical system was achieved through the use of a commercial

30 mm cage system (Thorlabs). Anodized aluminum cage plates, which feature holes

or threads specific to the optical element mounted to it as well as a set of precisely

reamed holes spaced 30 mm center-to-center for aligning the plate to a set of 6 mm

diameter construction rods with a sliding fit. Set screws fix the plates in their positions

along the optical axis. At the base of the optical system were cage plates specifically

designed for TO-3 packaging geometry (Thorlabs, CP04), which were used to mount

the laser diodes.
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Collimating lenses (Thorlabs, A230TM-C) were then installed in the optical sys-

tem using cage plates featuring x-y translating lens mounts (Thorlabs, CXY1). These

plates were positioned against the top of the laser diodes and a spanner wrench was

then used to screw the threaded collimating lens to the appropriate depth for the

desired focal spot. A VIS/IR viewing card (Thorlabs, VRC2) positioned at the mid-

plane of the microchip was used to visualize the focal spot during these adjustments.

Following the collimating lenses, the next component encountered in the beam path

was the shutters, which were installed in the optical system on custom brackets made

by modifying blank cage plates (Thorlabs, CP01) to accommodate the miniature

solenoids, including slots for sliding the solenoid into the optimal position before

tightening them in place using 1-72 machine screws. Finally, the pressure manifold,

which was discussed in Section 2.3 and shown in Figure 18, is aligned to the optical

system on the outermost four construction rods, which are longer than the inner rods

for this purpose. Precision fabrication via CNC machining and the use of a 6.03 mm

reamer (Guhring, 6.03 mm HSS-E Chucking Reamer) for the alignment holes inter-

facing with the optical system’s 6 mm construction rods ensured a precise sliding

fit. Since the microchip is precisely mounted to the pressure manifold using press-fit

1/16 inch dowel pins, the mounting of the manifold aligns the microchip to the optical

system. Once the optimal spacing for these components was determined, spacers were

milled from modified blank cage plates to slide on the construction rods, allowing for

the repeatable removal and reinstalling of the optical shutter mounts and pressure

manifold / microchip assembly. The optical system can be seen in Figure 49.

The x-y translation mounts housing the collimating lenses provided fine adjust-

ment (0.25 mm per rotation of positioner knob, ±1 mm travel) to the laser beam

position, allowing us to align each focal spot to the reaction chamber. This alignment

was performed by taping burn paper, which was made using PET transparencies

printed with two layers of black toner, to the microchip. Briefly powering the laser
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Figure 34: In order to align our lasers to the 1 µL reaction chambers of our PMMA
microchips, a toner-coated sheet of PET was used as burn paper, allowing for the
visualization of the focal spot after briefly powering the lasers. (a) Misaligned and
(b) aligned focal spots can be seen with respect to the reaction chambers.

generated a burn pattern, allowing us to visualize of the focal spot and determine the

degree of alignment. Figure 34 shows this process with examples of misaligned and

aligned focal spots.

In addition to aligning the laser focal spots to the reaction chambers, the two-

chamber instrument required identical laser alignment for each reaction chamber to

match heating rates and allow the temperatures in each chamber to closely track

each other. For this, care was taken to match the focal spot sizes by replicating the

collimating lenses positions in the optical axis. A power meter was used to confirm

equal optical power output from each laser. For final alignment, a microchip with

embedded thermocouples was loaded with PCR buffer in each chamber, installed

on the laser thermocycler, and heated. Fine adjustments to the x-y positions of

the collimating lenses were then made to match steady state temperatures in each

chamber.

To measure the z -axis repeatability of our method of aligning our microchip to

our optical system, our instrument was mounted to a microscope stage. We focused

on both a stationary chip and a successively removed and replaced chip. From the
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stationary chip, we ascertained from five measurements that the standard deviation

of the focusing error was 9.9 µm. From five measurements with the replaced chip,

which includes this focusing error, the standard deviation of the position measured

was σz =16.4 µm. To determine if this error was problematic, we measured the tem-

perature variation corresponding to z-axis translation between the laser and chip. For

a 1,000 µm displacement, which exceeds the 750 µm chamber height, a temperature

variation of only 0.5◦C was measured, so the σz measured was deemed acceptable.

To measure the combined repeatability of the chip placement, laser z -axis trans-

lation to allow chip placement, laser power output, and thermocouple placement for

calibration, we successively removed, replaced, and heated a water-filled chip and its

thermocouple. Five consecutive temperature measurements showed a standard devi-

ation of 0.1◦C, well within tolerances for PCR from conventional instruments. We

note that a contributing cause of the difference in temperatures between the trials is

the result of variations in manual thermocouple placement, which was improved as

we gained experience positioning the thermocouple tip.

3.1.3 Modulation

Controlling sample temperature during thermocycling required a method for modu-

lating the infrared radiation. For a single sample or multiple samples all undergoing

the same temperature profile, direct modulation of the laser output via an analog

control voltage supplied to the laser driver is the most obvious choice and proved to

be an effective method during early testing of our optical system. However, in order

to achieve thermal multiplexing, one would either need a dedicated laser driver for

each channel of the instrument, which would be extremely costly, or some method of

independently modulating the beams incident on each reaction chamber.

For this modulation functionality, we considered several approaches to inserting
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a component between the collimating optics and our microchip. The use of opto-

electronics, specifically a liquid crystal-based optical shutter, offered the most elegant

solution but high cost and issues of polarization-related baseline attenuation elimi-

nated this option (further discussion of this concept can be found in Section 5.2.3).

Instead, several mechanical solutions were considered. One early concept for enabling

thermal multiplexing was the use of graduated neutral density filters, each with a ded-

icated positioner allowing for variable attenuation of the laser radiation during the

annealing phase of thermocycling. The complexity of this method gave way to a

simpler approach in which sufficiently fast-responding actuators could operate under

PWM control to act as optical shutters. Early experiments made use of a solenoid

array extracted from a dot matrix printer but eventually we implemented off-the-shelf

miniature push type solenoids (Electro-Mechanisms, SP-25), with 8.9 mm stroke, as

our optical shutters. Each solenoid was driven independently from a 12V power sup-

ply using MOSFETs triggered by 10 Hz pulse width modulated signals generated

using LabVIEW and the digital outputs from our dat acquisition module. Power

consumption of the two-channel modulation circuit was roughly 2 W. Modulation

via shutter was compared to modulation via analog control voltages and revealed

negligible difference in performance.

An important criteria for our modulation strategy was minimal temperature fluc-

tuations during each step of the PCR reaction in order to operate within the tolerable

envelope of temperatures for denature, annealing, and extension. As shown later in

Figure 37, the biochemical processes involved in PCR can be forgiving to temper-

ature accuracy, with some setpoints demanding higher accuracy than others. This

observation has been made by other researchers, notably Carl Wittwer, one of the

pioneers of rapid PCR thermocycling [165, 56].

We examined the frequency response of our system at a steady state temperature
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Figure 35: Frequency response of shutter modulation for a steady state temperature
hold of around 73◦C. The changing peak-to-peak fluctuation for shutter control fre-
quencies of 5, 2.5, and 1 Hz can be seen from (a) the raw temperature signal and (b)
a Bode plot of amplitude versus shutter frequency.

of around 73◦C over a range of shutter control frequencies (5, 2.5, and 1 Hz) to de-

termine a minimum modulation frequency for our mechanical shutters. The recorded

temperature fluctuations, along with a linear Bode magnitude plot for mean peak-to-

peak fluctuations, are shown in Figure 35. With a desired minimum fluctuation of less

than 0.5◦C, a frequency of 5 Hz proved sufficiently fast but we eventually chose to use

10 Hz, since we would achieve even less fluctuation and the required PWM signal was

still of low enough frequency to be easily be reproduced with both hardware-timed

and software-timed control systems.

As discussed in Section 2.1.3, we characterized the effect of shutter attenuation

as a function of duty cycle on reaction chamber temperature by measuring cham-

ber temperatures in our two-chamber microchip (with 40 mm chamber separation)

while varying duty cycle through its full effective range (0.2–1.0) in 0.1 increments,

shown here in Figure 36. This demonstration confirmed our ability to achieve any

temperature potentially needed for a particular PCR protocol.
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Figure 36: Effect of optical shutter attenuation was characterized during radiative
heating of both reaction chambers of our microchip with 40 mm chamber separa-
tion. The shutter under chamber 2 was operated over its range of duty cycles in 0.1
increments. (Plot reproduced from Figure 9c.)

3.2 Temperature measurement

A critical requirement for controlling the temperature of our samples was the abil-

ity to accurately measure temperature. This was essential for both characterizing

the system for open-loop operation and for feedback control when operating closed-

loop. Although the localized nature of our heating method is one of the key features

enabling thermal multiplexing, it presented a significant challenge to measuring the

temperature of our 1 µL samples. Since most PCR thermocyclers operate by heating

samples indirectly by first heating the surrounding environment (e.g., thermal block,

air, thermally conductive microchip), simply measuring the heated environment can

be used to drive the temperature control system without ever needing to directly

probe the sample temperature. We did not have this convenience with our system.

Early attempts at temperature measurement made use of small diameter thermo-

couples inserted directly into the reaction chambers. This approach can give an esti-

mation of the thermal behavior of the system but is confounded by absorption of laser

radiation by the thermocouple tip. In addition, the metals that make up the thermo-

couple interfere with the PCR chemistry and inhibit the reaction [120]. An alternative
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approach is non-contact temperature measurement, either with a microbolometer ar-

ray (thermal camera) or fluorescence-based temperature measurement. The use of a

thermal camera, which is discussed later in Section 3.2.2, could be a viable option

but proved unreliable with our system in its current configuration. The use of hy-

drophilic temperature sensitive fluorescence dyes have been reported as effective for

systems requiring a non-contact method of temperature measurement but accuracy is

limited (> 1◦C) and the system would require fluorescence monitoring [166, 77, 84].

Instead, the use of an embedded thermocouple proved to be the most reliable choice

for temperature measurement, which will be described in detail in the next section.

Before fully developing our temperature measurement scheme, we performed a

study of temperature tolerances for each setpoint to determine the demands of ac-

curacy of PCR thermocycling. For this, we ran a series of herpesvirus reactions to

detect Epstein-Barr virus (EBV) template DNA at 5 pg/µL (1.0×106 copies/µL) with

varying temperature offsets. First, a set of nine reactions were run with temperature

offsets of -3◦C, +3◦C, and +6◦C applied individually to the three setpoints of dena-

turing, annealing, and extension. Then two reactions were run with offsets of +3◦C,

and +6◦C applied to all setpoints. The results, shown in Figure 37, indicated the

need for particularly accurate denaturing temperature holds and demonstrated the

relatively greater flexibility of the annealing and extension temperatures. Hold times

are similarly forgiving over a particular range, where the only quantitative input to

determining durations applies to the extension times, since polymerase molecules ex-

hibit known incorporation rates. Thus, while the task of assigning thermocycling

parameters does not have a clearly optimal solution, studies such as this guided the

heuristics we developed during the calibration and debugging of our temperature

control system.
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Figure 37: Experimental study of temperature tolerances for each PCR setpoint for
EBV amplification. Green lines indicate successful amplification, red lines indicate
failure, and the dashed lines indicate partially successful cases in which changing
that setpoint alone was successful by the constant offset of that magnitude resulted
in failure.

There were some notable limitations of this study. Temperature offsets were some-

what arbitrary and designed to only capture extremes of potential inaccuracies. Ad-

ditionally, the use of purified viral DNA as the template prevented the observation

of specificity-related issues, which would be notable in the presence of host DNA

when operating at excessively low annealing temperatures. Still, this study confirmed

the observation made in previous work that a “kinetic” paradigm for thermocycling,

where biochemical activity occurs over ranges of temperatures, is more appropriate

than the commonly excepted ”equilibrium” paradigm, which assumes that the pro-

cesses involved in PCR only at the precise temperature holds [167].

3.2.1 Thermocouple

Temperature feedback was provided by a custom T-type thermocouple (Physitemp In-

struments, T-240C) with a diameter of 125 µm, wired to a linearizing circuit (Omega,

TAC80B-T) that generated 1 mV/◦C, and an instrument amplifier configured for a

gain of approximately 10 to operate over the full range of the analog voltage input

of our data acquisition module. Before being used with our instrument, each ther-

mocouple was calibrated using a hot plate, 500 mL beaker of water, and multimeter
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(Fluke, 179 True RMS Digital Multimeter) with a K-type thermocouple to provide

the reference temperature. The water was heated through the range of temperatures

required for PCR (40–100◦C) while thermocouple voltages were recorded every 5◦C,

which was plotted against reference temperature to derive a calibration equation to

be inserted into the LabVIEW control program for every experiment conducted with

that particular thermocouple. Next, as described earlier in Section 2.2, the thermo-

couples were embedded within the microchip during the thermal bonding process,

aligning the tip repeatably to the side of our reaction chambers, leaving a gap of ap-

proximately 500 µm. After removing the bonded microchip from the bonding fixture,

a spot of hot-melt glue was applied at the point where the thermocouple exits the

side of the microchip for the purpose of strain relief since thermocouple of such a

small diameter are fragile and prone to fatigue if deformed repeatedly.

Since thermocouple tips were located near the reaction chambers and therefore

did not directly measure reaction temperature, calibration was necessary to corre-

late the measured temperature with the reaction temperature. For this, a calibra-

tion microchip was fabricated with thermocouples bonded directly inside the reac-

tion chambers in contact with the top wall of the chamber, furthest away from the

laser source, as pictured in Figure 38a. At this location the measured temperature

is close to the true reaction temperature, since theoretically <1% of the incident

radiation reached the thermocouple to directly heat it. This fraction was deter-

mined from the Beer-Lambert Law where the transmitted power, PT , was calulcated

as PT (λ) = P0 (λ) (10−α(λ)l), where α (λ) is the absorption coefficient of water at

1450 nm (30 cm−1), l is the path length (750 µm), PT is the transmitted power, and

P0 is the incident power.

In order to use the calibration microchip, the reaction chambers were filled with

PCR buffer solution and the microchip was installed in the thermocycler. Starting

with the laser turn-on voltage of 0.7 V, the steady state temperature in each chamber
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a) b)

500 µm

Figure 38: Calibration for our temperature measurement system required the fab-
rication of a special microchip with an embedded thermocouple in which the tip is
positioned at the top of the chamber, opposite the side of the chamber where radia-
tion is incident. Measurements from the in-chamber thermocouple, shown in (a), was
used to establish a baseline relationship between reaction chamber temperature and
the near-chamber temperature measured with our standard microchip, shown in (b).

was recorded as the voltage was increased to 1.4 V, where the temperature approaches

the maximum required temperature of 94◦C for denaturing. This was performed

four times to obtain an average steady state chamber temperature as a function of

laser driving voltage. Next, this process was repeated using the actual microchip

used for PCR, with thermocouples bonded near the reaction chambers, pictured in

Figure 38b. A calibration curve relating the estimated in-chamber temperature to

near-chamber temperature between these microchips was then calculated. Since this

calibration suffers from errors stemming from in-chamber temperature inaccuracies

due to irradiation influence and alignment imperfections, it serves only as a baseline

for further refinement. An array of calibration curves are generated by shifting the

slope of the baseline fit and pivoting around the room temperature measurements,

as shown in Figure 39. Each of these calibration relationships are then iteratively

tested with a λ-phage amplification until PCR yield reached expected levels. Initial

shifts to the slope are coarse changes of 5% but once a peak is detected, more refined

iterations of 1% slope shifts around the successful amplification were used to further
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Figure 39: The calibration process for temperature feedback using a thermocouple
embedded near the reaction chamber involved pivoting a baseline calibration (black)
of in-chamber versus near-chamber temperature measurements around the common
room temperature origin. Pivoting was performed by changing the slope to generate
the shifted calibration curves (colored). Implementing each of these iteratively with
a test reaction allowed us to empirically locate an accurate calibration curve.

refine the calibration. Temperature difference between the in-chamber and near-

chamber measurement changed linearly over the calibrated range. Typical values for

∆T, defined as Tin−chamber-Tnear−chamber, varied from around 10◦C at a low in-chamber

sample temperature of 50◦C up to 25◦C at a high sample temperature of 95◦C. In

addition to the need for calibration, there was concern regarding the inherent response

lag resulting from the fact that the heated sample and sensor were not co-located,

but this proved to be inconsequential for the time scales involved in our application.

During the course of testing our temperature measurement system, it was discov-

ered that reaction chamber orientation affected temperature uniformity in the z-axis

(i.e., across the thickness of the chamber). A microchip was fabricated with two

embedded thermocouples, with the tips positioned at opposite ends of the reaction

chamber along its depth (z -axis) and both to the side, out of the center of the laser

focal spot to minimize temperature bias due to direct irradiation of the thermocou-

ples. Next, the microchip was heated with a series of increasing laser power levels to
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Figure 40: The influence of chamber orientation on temperature uniformity through
the depth of the chamber was examined by inserting two thermocouples at each
end of the chamber and performing laser-mediated heating in one orientation, then
flipping the chip and repeating, over a series of steady state temperatures though the
full operating range of our system. When heating from (a) the shorter side of the
chamber, a gradient across the depth is observed while heating from (b) the longer
side of the chamber results in no significant gradient.

show the relative thermocouple responses over the range of possible temperatures.

As shown in Figure 40, when radiation was incident on the side of the chamber with

the shorter length, a significant temperature gradient was observed. When radiation

was incident on the side of the chamber with the longer length, negligible gradient

was observed. All proceeding experiments were conducted in the latter orientation

(Figure 40b) for optimal temperature uniformity. Although the exact cause of this

difference is unknown, it is suspected that internal reflections at the interface of the

substrate and sample are a factor for the case in Figure 40a due to the non-normal

incidence on the tapered regions.

3.2.2 Thermal camera

As an alternative to embedded thermocouples, a non-contact temperature feedback

method was explored. Such an approach would allow for more straightforward scal-

ing and simplify microchip fabrication without the need to manually embed sensors.
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Towards this goal, we prototyped a single channel version of our laser-mediated ther-

mocycler by adapting our optical system to accommodate a thermal camera (FLIR,

A315), which was mounted above the microchip at an angle to prevent stray radiation

from reaching the optics of the camera. The prototype, pictured in Figure 41, was

built from the same core optical system used for our other configurations, including

a 1450nm laser diode, a collimating lens mounted in a x-y translating cage plate,

a solenoid shutter positioned to the side, and a pressure manifold to align the mi-

crochip to the optical cage system while delivering 40 psi to the reaction chamber.

The thermal camera was rigidly mounted to an assembly of optomechanical compo-

nents, including a rotation mount, post clamp, 1.5 in optical post, and translation

stages (Thorlabs, RP01, C1501, P250/M, MT1/M), which allowed for precise and

repeatable positioning of the camera above the microchip.

Analogous to the indirect temperature measurement scheme developed for our

thermocouple system, the thermal camera was used to record the temperature over

the region of interest just above the reaction chamber. These pixel values were av-

eraged and then converted to sample temperature via the same calibration process

used for the near-chamber thermocouple method. Specifically, a special calibration

microchip with a thermocouple embedded in the top of the reaction chamber was

used to first determine an approximate correlation between laser driving voltage and

sample temperature. Then the same voltage values were used to heat the sample in

a regular, sensor-less microchip while the temperature at the top surface of the mi-

crochip above the reaction chamber was recorded using the thermal camera. Iterative

thermocycling runs with a series of calibration curves of different slope were finally

used to identify the true relationship between the thermal camera measurement and

the samples temperature.

Despite some promising results in which λ-phage DNA was occasionally success-

fully amplified (representative electropherogram shown in Figure 41), the thermal
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Figure 41: A thermal camera was implemented for non-contact temperature mea-
surement to drive our laser-mediated thermocycling. The camera was mounted over
a single-chamber, thermocouple-free microchip with the same core optical system
underneath (left). Although unreliable in its current configuration, this system did
prove to be potentially viable by successfully performing λ-phage amplification as
shown in the electropherogram (right).

camera system ultimately proved to be unreliable. The system only worked inter-

mittently, with the same calibration yielding positive results one day and negative

results the following day. It is suspected that inconsistencies in the temperature at

the top of the microchip due to the greater distance between the sample and the

point of measurement as well as the influence of convective heat transfer explain the

greater reliability of the thermocouple measurement system compared the the thermal

camera.

3.3 Control system

The challenges of temperature measurement motivated the development of two control

approaches: open-loop and closed-loop. Despite requiring rigorous characterization

and specialized components for stabilizing the thermal environment of our system,

open-loop control simplified operation of our instrument by obviating the need for

sensors, providing a more plug-and-play experience. But for a more precise and flexi-

ble control scheme capable of dealing with system disturbances and more amenable to
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Figure 42: Block diagram for our open-loop system. Based on the setpoints required
for a particular PCR reaction, a series of laser control voltages is generated and parsed
via LabVIEW to drive our infrared laser and perform open-loop thermocycling.

scaling, closed-loop control was implemented for our two-channel system to demon-

strate thermal multiplexing.

3.3.1 Open-loop

While the localized temperature control enabled by direct heating via infrared ra-

diation provided efficient, distributable, controllable, and scalable delivery of energy

to our 1 µL reaction volume, it presented the significant challenge of measuring the

temperature of the sample volume, as described in Section 3.2. Therefore, in parallel

with the development of a method for real-time temperature feedback, an open-loop

system was devised to obviate the need for sensors and provide a simple, easy-to-use

PCR platform. The basic operating principles involved using LabVIEW to parse a

series of laser control voltage values to the laser controller, as shown in Figure 42.

Through exhaustive system characterization and calibration, the laser control voltages

generated the desired temperature profile for a particular PCR reaction.

Our open-loop instrument was built on the back of an initial effort towards devel-

oping an open-loop, microfluidic PCR system that we referred to as a “plug-and-play”

instrument capable of amplifying λ-phage DNA in our 1 µL PMMA microchips in

less than 10 minutes [118]. This first generation of our open-loop system was simple

and easy-to-use, with a protocol similar to that of a conventional PCR instrument in

that the user prepared the PCR reagents with standard protocols and simply loaded

the sample into the microchip, installed the microchip in the instrument, ran the

control program, and removed it following amplification, in contrast to virtually all
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Figure 43: Early implementation of open-loop thermocycling for a single-chamber,
1µL microchip using a simple approach of fixed laser driving voltages for each PCR
stage. Despite the non-optimal features of the resulting temperature profile, amplifi-
cation of λ-phage was possible using 25 cycles in less than 10 minutes.

other reported microfluidic PCR instruments that require complicating features such

as valves, pumps, and temperature sensors [168]. The PCR mixture utilized common

reagent concentrations, including the relatively costly polymerase enzyme (0.02–0.025

U/µL), unlike most reported microfluidic PCR that require 2–20× more [68, 38, 69],

an advantage we attribute to the effectiveness of our mineral oil loading passivation

method [169].

Despite the speed and simplicity of our initial implementation of open-loop ther-

mocycling, temperature accuracy and stability was not sufficient for amplifying more

challenging and clinically-relevant genetic targets beyond our λ-phage test reaction.

This was attributed to the rudimentary control voltage profile used for controlling

laser power output and in turn sample temperature. This voltage profile consisted of

three fixed voltages for each of the three PCR setpoints. Since this profile did not

account for temperature dynamics during transitions and holds, the resulting tem-

perature profile did not yield stable holds and exhibits undesirable features such as

overshoot. A sample of this “plug-and-play” open-loop cycling is shown in Figure 43.
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In order to improve upon the first generation open-loop instrument, we studied

its shortcoming to identify sources of inconsistency (e.g., cycle-to-cycle temperature

drift) and evolved the design to achieve the accuracy and reproducibility of amplifi-

cation that is paramount for more challenging assays. More specifically, the redesign

was aimed at performing quantitative, reverse transcription PCR to expand capabil-

ities to include applications such as gene expression studies. Towards this end, the

system was coupled to a microscope and substantial improvements were made to the

thermal and mechanical stability.

The open-loop system, shown in Figure 44, consisted of an infrared laser system

mounted on top of an environmental control fixture, which aligned and pressurized a

single-chamber microchip and provided mechanical and thermal stability. This assem-

bly was mounted on top of an inverted microscope (Nikon, TE2000) for applications

requiring fluorescence detection. A xenon arc lamp (Sutter) filtered to 480/20 nm

band-pass was used for the excitation. Emission was filtered (520/20 nm) and im-

aged with a CCD camera (Roper Scientific) after magnification with a 4×/0.2 NA

objective (Nikon). To prevent stray infrared radiation from damaging the microscope

optics, a disc-shaped water capsule was fabricated from three layers of 3 mm thick

PMMA that was laser cut and bonded with marine adhesive, providing a 3 mm thick

layer of water directly above the microscope objective and in-line with the optical

path. This functioned like a hot mirror and absorbed any 1450 nm infrared radiation

escaping past the microchip. Before every run of qPCR or qRT-PCR, the water bath,

CCD camera, laser driver, and xenon arc lamp were powered on and allowed to warm

up for 30 minutes.

The laser system was built using a 30 mm cage system with a 1450 nm, 600 mW

infrared laser diode (Hi-Tech Optoelectronics, LMD-1450-600-33) powered using a

constant current laser driver (Wavelength Electronics, WLD3343-3L). Modulation of

laser output was accomplished using the analog voltage control feature of the driver.
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Figure 44: (a) Schematic and (b) photograph of our open-loop microfluidic PCR sys-
tem used for qRT-PCR. The hinged environmental control fixture provided mechani-
cal and thermal repeatability for the microchip and allowed simultaneous interfacing
with an inverted microscope located below the fixture and an infrared laser heating
system mounted on top of the fixture.

The laser was mounted in a cage plate designed to accommodate the geometry of the

TO-3 packaging of the laser diode. Attached to this cage plate, opposite the diode, was

a custom water-cooled tellurium copper heat sink for constant optical power output.

Thermal compound (Arctic Silver) was used at the cage plate-heat sink interface for

minimizing thermal resistance. An x-y translational cage plate (Thorlabs, CXY1)

was used to position an aspheric lens (Thorlabs, A230TM-C) in the optical path to

collimate the laser diode output.

The environmental control fixture was made up of two hinged 12.7 mm thick tel-

lurium copper plates that were each machined square with dimensions of 80 mm× 80 mm.

The base plate, into which the microchip is installed, featured a transverse water-

cooling passage for controlling the microchip surface temperature and an air passage

for providing 40 psi N2 to the microchip ports to prevent the expansion of entrained

air bubbles during PCR. For more details, refer to Section 2.3. In the bottom plate,

pressurization ports designed to mate with the microchip fill ports were machined
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with annular slots for miniature rubber O-rings to seal. A pocket in the center of

the bottom plate designed for a close fit with the microchip ensured a completely

enveloping thermal environment. Alignment pins press fit into the bottom plate en-

abled accurate and repeatable placement of the microchips in the fixture. To allow

the microchip reaction chamber to be imaged for fluorescence detection, an 8 mm

hole was drilled through the center of the bottom plate aligned with the center of

the reaction chamber. The top plate, to which the laser system was attached with

a 30 mm cage assembly, similarly featured a transverse water-cooling passage. To

allow the microchip chamber to be heated by the laser system, another 8 mm hole

was drilled, this time through the center of the top plate aligned with the center of

the reaction chamber. Two thumbscrews located opposite the hinge were used to

close the fixture, bringing the laser system into alignment with the microchip and

preloading the microchip against the O-rings for proper pressurization.

The hinge used for the fixture (pictured in Figure 44b), which was a custom made

butt-style five-knuckle hinge machined from aluminum and assembled with a steel

pin and e-clips, exhibited a small amount of play due to the necessary gap between

the knuckles of the hinge. This potential source of error was mitigated by designing

the hinge to align the top and bottom plates when the top plate was pushed to

the left during the closing of the fixture. Therefore, this routine was carried out

for every experiment to ensure alignment. The water passages were pumped from

a recirculating, temperature-controllable water bath set to 42.8◦C, which imposed

a microchip chamber temperature of 42◦C, which was selected for maintaining an

elevated microchip temperature to reduce the required laser power and, in cases of

amplifying RNA, allowed for reverse transcription without the need for laser heating.

To assess the mechanical repeatability of the environmental control fixture, specif-

ically the repeatability of microchip position, an empty microchip was installed in the

fixture on the alignment pins, the fixture was closed and tightened, and the microchip
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reaction chamber was imaged using the inverted microscope. A reference line was su-

perimposed over the image and the distance between the chamber sidewall and the

reference line was recorded. This measurement was repeated for ten microchips, each

from a different fabrication batch, to determine the error of the positioning of the mi-

crochip chamber along the critical axis of the chamber width, which is most sensitive

to misalignment due to the narrow laser beam focal spot. Results indicated that the

combined processes of milling, bonding, and installing the microchip produced vari-

ation of 15 µm, corresponding to 3% of the microchip chamber width, in the critical

axis of the chamber width.

To assess the repeatability of the hinge for positioning the laser over the mi-

crochip, the same toner-based burn paper method, described earlier and illustrated

in Figure 34, was used for ten trials. Alignment between the focal spot and chamber

was then evaluated qualitatively. To assess thermal stability, a water-filled microchip

was placed in the fixture with the laser diode off or on as stated.

The environmental control fixture provided exceptional thermal stability. For the

reverse transcription step with a setpoint of 42◦C, with the laser diode off, we mea-

sured chamber temperature accuracy of 0.29◦C (average difference from the setpoint),

with precision (represented by the standard deviation) of 0.09◦C.

We next evaluated the accuracy and precision of the system over the course of 20

consecutive cycles for both PCR and RT-PCR, representing one thermocycling run.

Accuracy was computed as the difference between the setpoint and the measured

average temperature and was calculated for each of the three setpoints (denaturing,

annealing, and extension). For this calculation, the measured average temperature

was defined as the average temperature during twenty 10 second intervals, consecu-

tively, one per cycle. We then computed the precision, similarly, as the average of

the measured temperature variation at each of the three setpoints. We define the

measured temperature variation as the standard deviation of the temperature over
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twenty 10 second intervals, consecutively, one per cycle. For PCR, the accuracy was

0.12◦C, 0.82◦C, 0.53◦C and precision was 0.16◦C, 0.18◦C, 0.15◦C for the denaturing,

annealing, and extension steps, respectively. For RT-PCR, the accuracy was 0.59◦C,

0.12◦C, 0.02◦C and precision was 0.21◦C, 0.41◦C, 0.25◦C for the denaturing, anneal-

ing, and extension steps, respectively. This temperature stability is comparable to

those reported by other conventional and microfluidic PCR systems. Conventional

thermoelectric instruments (e.g., Bio-Rad MJ Mini) achieve temperature uniformity,

or precision, of around 0.4◦C. The Roche Light-Cycler reports temperature uniformity

up to 0.15◦C [170]. A microfluidic PCR system developed by Angione et al. reported

temperature variations for the reverse transcription, annealing, and extension steps

of 0.8◦C, 0.1◦C, and 1.3◦C, respectively [68].

Lastly, we evaluated the run-to-run variability as a measure of repeatability. After

computing the measured average temperature at each of the three setpoints for two

separate runs, we took the pairwise difference between them and averaged these three

differences (one per setpoint). The run-to-run variability for PCR was 0.12◦C; for RT-

PCR was 0.31◦C.

In order to implement open-loop control, a calibration relationship between laser

driving voltage and steady state aqueous solution temperature was necessary. A cal-

ibration microchip was fabricated with a 125 µm diameter thermocouple (Physitemp

Instruments, T-240C) bonded into the reaction chamber with the tip positioned fur-

thest from the laser, as shown in Figure 38a. The microchip chamber was filled

with loaded with a 1 µL water sample and temperature was recorded during heat-

ing as the laser voltage was incrementally adjusted through its full range from laser

turn-on to maximum power output. A simple linear regression was fit to the tem-

perature measurements to generate an approximate temperature versus laser control

voltage calibration curve. As described earlier for thermocouple feedback control, the

in-chamber temperature measurement had to be bias corrected, which was carried
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out empirically by adjusting the slope of the calibration curve and attempting our

λ-phage reaction until successfully detecting a peak. Fine adjustment to the slope

of the curve was performed until locating a relative maximum PCR yield, further

refining the accuracy of the calibration.

Open-loop control of chamber temperature was accomplished by driving the laser

with a discrete set of voltages without feedback. This voltage input is comprised of

a series of segments determined uniquely for each temperature transition and subse-

quent temperature hold: ambient to denaturing, denaturing to annealing, annealing

to extension, extension to denaturing, or more generally Tn to Tn+1. To determine

each segment, we used the known calibration relationship between laser driving volt-

age, V , and steady state chamber temperature, T , in the following procedure. The

laser was driven at Vn corresponding to Tn for 2 minutes to reach steady state using

the calibration microchip in the instrument. Vn was step changed to Vn+1 correspond-

ing to Tn+1 for 2 minutes, again to reach steady state. The temperature T (t) was

recorded from the time of the step change for the 2 minute duration.

The measured temperature, T (t), was converted to voltages, V (t), using the cali-

bration relationship. For V2 > V1 (heating), we computed Vr(t) = 2Vmax−V (t), where

Vmax is the maximum value of V (t), to reflect V (t) about Vmax. For Vr(t) > Vhigh,

where Vhigh is the highest voltage that can be safely used for the laser, we set

Vr(t) = Vhigh. Similarly, for V2 < V1 (cooling), we computed Vr(t) = 2Vmin − V (t),

where Vmin is the minimum value of V (t), to reflect V (t) about Vmin. For Vr(t) < Vlow,

where Vlow is the laser turn-on voltage, we set Vr(t) = Vlow. Vr(t) therefore consists of

a constant phase of duration tc followed by a quasi-exponential phase corresponding

to the heating and cooling dynamics of the microchip, approximately a first-order dy-

namic thermal system. Vr(t) has a 2 minute domain. Next Vr(t) is truncated to the

duration of tc+th, where th is the desired hold time for the PCR reaction step. Lastly,

the segments are concatenated for the initial denaturing phase and desired number
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Figure 45: Open-loop thermocycling was accomplished using a laser power profile
(dashed) to generate the desired profile of reaction chamber temperatures (solid).
The temperature profile was determined from a calibration between laser driving
voltage, laser output power, and chamber temperature, along with characterization of
temperature dynamics during temperature transitions and holds. This thermocycling
was used to perform qPCR for a 500 bp amplicon of λ-phage DNA for 30 cycles, with
a 1 minute initial denaturation for the first cycle and all subsequent cycles consisting
of 93◦C for 10 seconds, 68◦C for 20 seconds, and 72◦C for 20 seconds.
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of cycles as required for PCR. This methodology results in a piecewise continuous

function, or open-loop laser power profile, consisting of (1) exponentially rising or de-

caying voltages for temperature holds and (2) maximally on or off voltages for heating

or cooling transitions, respectively. The resulting voltage and temperature profiles

are shown in Figure 45. The chamber temperature rapidly and repeatably reaches

each stable hold phase with minimal overshoot.

Efficiency, sensitivity, specificity, accuracy and reproducibility are all important

factors when comparing a novel PCR assay to traditional laboratory equipment [171].

To evaluate the system, real-time amplifications of both DNA and RNA were per-

formed as shown in Figure 46.

For demonstrating real-time DNA amplification (qPCR), a 500 bp amplicon of

λ-phage DNA (Affymetrix) was targeted with the primer set listed in Appendix B.

An intercalating dye (Lonza, SYBR Green I) was used for real-time detection. Re-

actions were prepared from a commercial PCR master mix according to the protocol

listed in Appendix A to produce 5 µL reaction mix aliquots from which 1 µL samples

were loaded into our microchips using the mineral oil technique described in Sec-

tion 2.4.3.1. The system was tested with a range of λ-phage DNA template (105–107

starting copies). (Note: BSA was also included for dynamic passivation since these

experiments were performed before discovering the minor detrimental effects of BSA

when paired with our mineral oil loading technique.) Loaded microchips were in-

stalled in the open-loop fixture and a total of 30 cycles were then performed with a

1 minute initial denaturation for the first cycle and all subsequent cycles consisted of

93◦C for 10 seconds, 68◦C for 20 seconds, and 72◦C for 20 seconds.

For real-time amplification of RNA (qRT-PCR), a 100 base segment of the RNA

transcript from the mouse glyceraldehyde 3-phosphate dehydrogenase (GAPDH) house-

keeping gene was chosen as the target using the primer set listed in Appendix B.

GAPDH was chosen for its consistent expression during stem cell differentiation as a
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control for thermocycler validation. 5.45 ng of total RNA was extracted from mouse

embryonic stem cell culture lysate, as quantified using a spectrophotometer (Thermo

Scientific, NanoDrop 2000). The protocol provided in Appendix A allowed for the

preparation of reaction mixes capable of “single tube” reverse transcription and PCR.

The same SYBR Green I dye used for the λ-phage qPCR was used for this experiment.

The oil loading technique was used to load 1 µL sample volumes into our mi-

crochips. The microchips were then installed in the fixture at 42◦C for 30 minutes

with the laser off to allow the reverse transcription to occur prior to thermocycling.

A total of 30 cycles were performed, with a 1 minute denaturation for the first cycle

to inactivate the reverse transcriptase and denature the cDNA and all subsequent

cycles consisted of 93◦C for 10 seconds, 56◦C for 20 seconds, and 72◦C for 20 seconds.

For both qPCR and qRT-PCR detection, fluorescence images were collected during

the extension phase of every cycle using NIS Elements BR software and post-processed

via MATLAB. To avoid photobleaching of the SYBR Green dye, exposure time was

limited to 2 seconds and images were taken 17 seconds into each extension hold time.

The image processing algorithm computed a normalized series of average intensities

over a constant region of interest on the microchip, indexed by cycle number. All

values below the initial intensity level were set to zero. For qRT-PCR detection, a

median filter was applied to smooth fluorescence intensity traces.

For qPCR of λ-phage DNA, three template concentrations ranging from 105-107

starting copies (n=3) were amplified to evaluate repeatability and efficiency with

known starting template concentrations, providing a standard curve (Figure 46a).

The cycle number threshold, CT , was set as the cycle number at which the measured

fluorescence crosses a threshold of 30σ, where σ is the standard deviation of the

fluorescence intensity for the first six PCR cycles. The logarithms of the λ-phage

DNA starting copy numbers were plotted against cycle threshold values, and a linear

regression fit was performed. The coefficient of determination, R2, from this regression
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Figure 46: Fluorescence intensity vs. cycle number for qPCR and qRT-PCR. (a)
PCR of λ-phage DNA with varying starting copies showing accurate exponential
amplification of serial dilutions. The inset shows CT vs. log starting copy number,
used to determine amplification efficiency. Each data point represents the average of
three replicates, with error bars corresponding to one standard deviation. (b) RT-
PCR of GAPDH RNA transcript for three trials showing repeatable cycle number
threshold for amplification. PCR λ-phage DNA required 35 minutes for 30 cycles;
RT-PCR of GAPDH required 65 minutes when accounting for the initial 30 minutes
for reverse transcription.

analysis was 0.9933. The standard deviations of these cycle threshold values were

computed as 0.5, 1.2, and 0.5 cycles for 105, 106, and 107 starting copies, respectively,

indicating good repeatability. Total runtime was 35 minutes for 30 cycles.

The efficiency, E, of the system was calculated from the slope of the standard

curve (k = −5.1) and found to be E = 100(10 − 1/k − 1) = 57%. Conventional

PCR systems typically achieve 65–90% [172, 173], and microfluidic PCR systems

typically report lower efficiencies [174, 54]. This is due primarily to high surface-

area-to-volume-ratio and the resulting adverse surface interactions, as was explored

in Section 2.4. Our efficiency is somewhat lower than conventional systems, perhaps

due to non-optimal reagent concentrations, cycle hold times, or temperatures, but

amplification was obtained consistently for both DNA and RNA.

For qRT-PCR of GAPDH RNA transcripts, the amplification process was repeated

three times to evaluate repeatability (Figure 46b). The cycle number threshold, CT ,

was set to 10σ. The repeatability of the qRT-PCR was measured by calculating
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the standard deviation of the CT values and found to be 1.0 cycle. Total runtime,

including the initial 30 minutes allotted for reverse transription and 30 cycles of

thermocycling, was 65 minutes.

The average heating and cooling rates of the system were 3.3◦C/sec and 3.86◦C/sec,

respectively. Conventional thermoelectric thermocyclers (e.g., Bio-Rad MJ Mini) op-

erate with heating and cooling rates of 3.3◦C/sec and 2.0◦C/sec while the Roche

Light-Cycler qPCR instrument reports heating and cooling rates of 3.3◦C/sec and

3.0◦C/sec [170]. One recent microfluidic qPCR system, by Angione et al., reported

heating and cooling rates of 1.6◦C/sec and 1.8◦C/sec [68]. A more rapid microfluidic

qPCR capable system [175], reports achieving 30 cycles in 26 minutes (rates were not

reported) as compared to our 30 cycles in 35 minutes, and Kim et al. achieve 40

cycles in 6 minutes [84].

Comparatively, of the thermocyclers capable of qPCR, our system is faster than

conventional real-time thermocyclers and most microfluidic counterparts. The speed

is comparable to the Roche Light-cycler, but with smaller volumes (1 µL vs. 10–50 µL)

and potential for integration of multiple pre- and post-PCR steps as others have done

[39, 176]. Compared to faster microfluidic qPCR systems [84, 175], our system is

capable of qRT-PCR in addition to qPCR, uses disposable polymer microchips, and

is easy to use. Although we have previously used a version of this system to perform

faster PCR (e.g., 10 minutes/analysis), this design exhibits slower cooling rates due

to the environmental control fixture and therefore longer analysis time.

Control reactions were performed with 5 µL samples volumes, each covered with

15 µL of mineral oil to prevent in-tube evaporation, using a conventional, Peltier-

based thermocycler (Bio-Rad, MJ Mini). The λ-phage DNA amplification underwent

40 cycles of thermocycling with a 5 minute, 95◦C initial denaturation step at the

beginning of cycling and each subsequent cycle consisted of 95◦C for 30 seconds,

68◦C for 60 seconds, and 72◦C for 60 seconds. The last cycle included a 2 minute,
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Figure 47: Representative electropherograms of PCR of λ-phage DNA (left column)
and RT-PCR of GAPDH RNA transcript (right column) amplification products using
both a conventional thermocycler with 5 µL volume (top row) and open-loop laser-
mediated thermocycler with 1 µL volume (bottom row). The microfluidic PCR system
shows comparable yield and improved specificity. Outer peaks correspond to sizing
and quantification markers (15 bp, 1500 bp).

72◦C final extension. The control amplification of the GAPDH RNA transcript began

with a temperature hold at 42◦C for 60 minutes for the reverse transcription process

followed by 40 cycles of thermocycling with a 5 minute, 94◦C initial denaturation step

then subsequent cycles of 94◦C for 10 seconds, 56◦C for 30 seconds, and 72◦C for 30

seconds.

End-point detection was used to confirm amplifications for every reaction run on

the open-loop system. Additionally, the PCR and RT-PCR yields and specificity

achieved by the laser thermocycler and conventional thermocycler were compared.

Eletrophoretic detection was performed using the Agilent 2100 Bioanalyzer. The

resulting electropherograms for each case are shown in Figure 47, which include siz-

ing and quantification markers at 15 bp and 1500 bp. Yields from PCR were not

statistically different (p>0.1), nor were yields from RT-PCR (p>0.1).
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Regarding specificity, the electropherogram in Figure 47 indicate that the forma-

tion of non-specific PCR products was reduced with the open-loop laser thermocycler.

In contrast to other reports suggesting the presence of non-specific products during

microfluidic qPCR [175], we did not observe this. The laser thermocycler yields

slightly improved performance of qRT-PCR as compared to a conventional thermo-

cycler.

The combination of our disposable microchip and environmental control fixture

yielded a real-time (RT-)PCR platform with the time and cost-saving benefits of

microfluidics without the complex fabrication and operation involved with most mi-

crofluidic devices. This easy-to-use platform could be a valuable tool for real-time

monitoring and control for applications in emerging fields such as stem cell bioman-

ufacturing [177], where gene expression is tracked over time cell populations and

expression levels change from environmental stimuli in minutes to hours [32, 46], or

during differentiation from hours to days. Still, this open-loop instrument is not ca-

pable of analyzing multiple targets simultaneously nor can is operate with the volume

handling and sensitivity required for applications such as single cell gene expression

measurement. For scaling to larger numbers of targets and improving speed and

reaction performance, the precision of closed-loop must be harnessed.

3.3.2 Closed-loop

Despite the ease-of-use and compatibility with real-time fluorescence monitoring of-

fered by the open-loop system, the need to perform PCR on multiple unique genetic

targets, as commonly required in molecular biology laboratories, demanded a more

scalable and precise method of temperature control. The limits of empirical thermal

characterization and the slow ramping resulting from the use of the environmental

control fixture, especially during the cooling transitions, prevented the implemen-

tation of open-loop control for a platform accommodating multiple samples with
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Figure 48: Block diagram for our closed-loop system. Temperature feedback from our
thermocouple system provides inputs to a PID control in LabVIEW for determining
the duty cycle for our shutter modulation system to achieve closed-loop thermocy-
cling.

independently-controlled temperatures. In addition, we sought to increase through-

put by not only focusing on a greater number of samples but also a greater number

of target with a new mode of operation we developed called “thermal multiplexing”

in which multiple reactions, each with its own unique annealing temperature, are

run in parallel by modulating radiation via mechanical solenoids. This concept was

introduced in Section 1.5 and depicted in Figure 1. Implementing this more com-

plex heating mode with an open-loop system would require characterization of both

steady state and transient behavior of the system for a variety of desired temperature

profiles, a prohibitively tedious process.

In order to operate with more precise and multiplexed temperature control, closed-

loop control was required. We implemented this scheme for scaling from a single-

chamber to a two-chamber design. As described in Section 3.2.1, an embedded ther-

mocouple located near our reaction chamber for indirect probing of sample tempera-

ture was selected as the preferred method for feedback. A basic scheme was devised

in which, for each step in the thermocycling program, measured temperature, T (t),

was compared to the PCR setpoint, Tref , and the error, |Tref − T (t)|, was passed to

a PID controller, which output corresponding duty cycle values, DC(t), to optical

shutters to modulate the radiation delivered from the infrared lasers (operating at a

fixed optical power output) to the reaction chambers. This basic scheme is shown in
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block diagram form in Figure 48.

We implemented this closed-loop control scheme with thermal multiplexing using

infrared laser radiation as the heat source for n=2 chambers per microchip and using

mechanical solenoids as attenuators, as shown in Figure 49. Many of the same compo-

nents used for the open-loop system were used for the closed-loop system. Specifically,

infrared radiation was supplied by a pair of 1450 nm, 600 mW laser diodes (Hi-Tech

Optoelectronics, LMD-1450-600-33) wired in series and powered by a single constant

current laser driver (Wavelength Electronics, PLD5K-CH) for common control and

uniform optical power output. Miniature solenoids, described in Section 3.1.3, were

used as optical shutters and were driven independently using 10 Hz pulse width mod-

ulated signals generating using digital outputs from a 16-bit data acquisition module

(National Instruments, USB-6221 BNC). The laser diodes were mounted on aluminum

heat sinks with axial cooling fans to prevent overheating and to maintain constant

optical power output. As detailed in Section 3.1.2, all components were assembled

and aligned with a 30 mm cage system. Collimating lenses were installed in x-y

translational mounts to provide fine adjustment of the focus and position of the in-

frared beam. The two-chamber microchip was installed in the optical system by first

mounting it to the pressure manifold (Section 2.3), which featured alignment pins

for repeatable positioning, 1 mm thick, laser cut silicon gaskets for sealing, and luer

connections for delivering 40 psi N2 from a supply tank to the microchip fill ports to

prevent the expansion of entrained air bubbles during the near-boiling temperatures

used for PCR. This pressure manifold/microchip assembly was then aligned to the

laser system using the construction rods of the cage system.

Temperature was measured using two 125 µm diameter thermocouples (Physitemp

Instruments, T-240C), which are embedded in the microchip and calibrated for in-

direct measurement of reaction chamber temperature, as detailed in Section 3.2.1.
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Figure 49: (a) Schematic and (b) photograph of our closed-loop infrared laser thermo-
cycler consisted of two infrared laser sources controlled via a common power supply,
two solenoid shutters, and a PMMA microchip featuring two 1 µL reaction chambers,
each with a pair of 700 µm diameter fill ports for sample loading and pressurization
at 40 psi via a pressure manifold. Two thermocouples (not shown) are bonded be-
tween the layers of the microchip with the tips located within 1 mm of the reaction
chambers and calibrated for closed-loop temperature control.
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Accompanying electronics linearized and amplified the thermocouple voltage for mea-

surement using analog inputs of our data acquisition module. This was the most cru-

cial component in achieving successful closed-loop control. With proper thermocouple

positioning and calibration, we achieved reliable feedback control.

A LabVIEW program was developed to control our closed-loop system. The block

diagrams for the main program and the subroutine controlling the progression of each

cycle are shown in Figure 50. The user interface allowed the input of the desired

temperature setpoints and hold times for each stage of PCR (initial denaturing, de-

naturing, annealing, extension, and final extension) for each of the two reactions as

well as the total number of cycles. Additionally, the interface featured an input field

for setting a filename to which the time, temperature, and shutter duty cycle data

was stored. The main program, shown in Figure 50a, is a 3-pane sequence in which

the first pane collected and passed input data to the second pane, which powered on

the lasers and executed the cycling subroutine while storing time, temperature, and

duty cycle data in real time. Finally, the arrays of data are passed to the third pane

where they are stored to a text file.

The core of the programming is the cycling subroutine, which reflected the control

scheme shown in Figure 48. The basic flow of this subroutine, shown in Figure 50b,

can be summarized as follows: 1) The current stage of PCR (initial denaturing,

denaturing, annealing, extension, or final extension) was determined based on binary

values representing each of the five stages; 2) Temperature measurements of each

chamber were compared to the relevant setpoints for that stage to determine the

current error, |Tref − T (t)|; 2) Depending on the error, the shutter duty cycle was

determined, with 0.0 for heating, 1.0 for cooling, and a value generated by a PID

controller for holding the reaction chamber temperatures at the commanded setpoints;

3) An array for each chamber containing three values (Tref , error, and duty cycle)

was sent via global variable to an external program that commanded the shutter to
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a)

b)

Figure 50: LabVIEW was used to implement our PID control system. (a) The main
program passes inputs for thermocycling conditions, including temperature setpoints,
hold times, and total cycle number, to the (b) cycling loop that measures temperature,
uses the PID controller to determine appropriate duty cycles for the shutter control
signal, and keeps track of thermocycling progress through its repeated stages.
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open for heating, close for cooling, or oscillate via 10 Hz PWM signal. At the end

of each temperature hold, the binary values for the PCR stages were updated and

the program proceeded to the next stage, with cycle number being updated after

each extension step until all cycles had been executed, at which point the lasers were

powered off, data was stored, and the program was terminated.

As a proof of concept for thermal multiplexing, we used two unique PCR reactions

with relatively high and low annealing temperatures. The high temperature reaction

targets a 500 bp amplicon from λ-phage DNA with a 68◦C annealing temperature,

while the low temperature reaction targets a 600 bp amplicon from Epstein-Barr virus

(EBV) DNA with a 48◦C annealing temperature [15].

λ-phage and EBV reaction mixes were prepared according to the protocols de-

scribed in Appendix A, dividing the mixes into 5 µL aliquots. Using our mineral

oil loading technique, described in Section 2.4.3.1, 1 µL samples of each target were

loaded into our two-chamber microchips.

To demonstrate the importance of annealing temperature on final product concen-

tration, the reactions were thermocycled with four sets of conditions: low annealing

temperature (48◦C), high annealing temperature (68◦C), average annealing temper-

ature (58◦C), and ideal annealing temperatures by thermal multiplexing (λ-phage at

68◦C and EBV at 48◦C). A total of 40 cycles were performed, with a 1 minute initial

denaturation for the first cycle and all subsequent cycles consisted of denaturing at

94◦C for 10 seconds, annealing for 20 seconds, and extension at 72◦C for 20 seconds,

as well as a final extension step of 3 minutes. Electrophoretic detection of the PCR

products was performed on an Agilent Bioanalyzer, using the DNA 1000 kit that

includes sizing and quantification markers at 15 bp and 1500 bp.

In order to simultaneously perform the λ-phage and EBV amplifications, two dis-

tinct thermocycling profiles were generated, as shown in Figure 51. Total runtime

was roughly 110 minutes to complete 40 cycles. The average cycle duration was 155
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Figure 51: Independent temperature profiles for λ-phage and EBV amplifica-
tions were generated simultaneously with distinct annealing temperatures of 48◦C
and 68◦C. This system utilized closed-loop control via thermocouples feedback and
shutter-based optical modulation of infrared laser radiation in 1 µL reaction chambers
on a polymer microchip.

sec with average heating rates of 2.54◦C/sec and cooling rates of 2.53◦C/sec (n=5).

Although this is not a significant improvement over conventional thermocycler speeds,

the system was run with conservative hold times and without extensive optimization.

Additionally, this demonstration represents an extreme case of reactions with differ-

ent annealing temperatures and therefore required longer transitions than would be

expected for more common sets of reactions with a narrower range of temperatures.

Regarding thermal accuracy and repeatability, we measured temperate accuracy as

compared to the setpoint within 0.64◦C (average absolute difference over three consec-

utive cycles) and standard deviation around the setpoint of 0.46◦C, both insensitive

within the tested range of 48-94◦C.

A representative set of electropherograms for the microchip-based λ-phage and

EBV amplifications can be seen in Figure 52. When both reactions were run with the

low annealing temperature of 48◦C, ideal for EBV, the λ-phage reaction failed while

EBV was easily detected. When both reactions were run with the high annealing
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Figure 52: Electropherograms show the PCR products for λ-phage (top row) and
EBV (bottom row) amplifications run in parallel using four different thermocycling
runs (represented by each column). From left to right, annealing temperature was
uniform across the two reaction chambers (1 µL each, 40 mm separation) at low
and high values, the average of the high and low, and then thermally multiplexed to
maintain the ideal temperatures for each reaction. Small peaks correspond to sizing
and quantification markers (15 bp, 1500 bp).
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temperature of 68◦C, ideal for λ-phage, the EBV reaction failed while λ-phage was

easily detected. For the condition of thermal multiplexing, where each reaction was

run with its ideal annealing temperature, both products were easily detected. An ex-

panded data set for demonstrating thermally multiplexed virus detection is presented

in Section 4.3.

Such results indicate the importance of operating at ideal reaction conditions.

In cases where primer design is inflexible to annealing temperature considerations

and biochemical multiplexing is infeasible, the freedom to perform reactions with

independent thermal conditions is advantageous.

3.4 Conclusions

In pursuit of a method for controlling the temperature of a 1 µL aqueous sample in

our polymer microfluidic device, a series of technological innovations for the distribu-

tion and modulation of infrared radiation and subsequent temperature measurement

for rapid thermocycling were developed. We sought to match or improve upon the

speed and accuracy of conventional PCR instrumentation while bringing the novel

functionality of thermal multiplexing to a microfluidic PCR platform.

The optical system developed for achieving rapid thermocycling of a microfluidic

sample was built around a 1450 nm laser diode. This radiation source provided a

wavelength efficiently absorbed by water while being minimally absorbed by our mi-

crochip substrate material (PMMA), providing enough energy to achieve ramping

rates up to 60◦C/sec while consuming a relatively low amount of electrical power,

potentially amenable to a point-of-care application. Coupling the laser to appropri-

ate optical elements and making use of a combination of off-the-shelf optomechanics

and precision fabricated components yielded an optical system capable of accurate

control of focal spot size and alignment to a corresponding target reaction cham-

ber. Miniature solenoids were implemented as optical shutters and demonstrated to
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be an effective and low-cost method of laser modulation, providing the full range of

temperatures required for PCR.

A method for temperature feedback was developed in which miniature thermocou-

ples were embedded in our microchip during the thermal bonding process with the tip

within close proximity to our reaction chambers. Through a careful calibration pro-

cess, this reference temperature could be reliably related to sample temperature. Still,

temperature sensing proved to be the most challenging task in the development of

our instrument and our solution has a number of limitations. In addition to the cum-

bersome steps required for fabricating our microchips with embedded thermocouples,

reproducibility and the effects of ambient conditions must be considered. Without the

use of environmental control measures as implemented for our open-loop instrument,

changing ambient temperature has the potential to affect the accuracy of the mi-

crochip calibration, requiring on-site calibration and verification of negligible changes

in ambient temperature. Another potential issue relating to environmental condi-

tions is the ability to achieve reasonable ramping rates in extreme temperatures. In

a cold climate, heating rates and maximum achievable temperature could be severely

limited, potentially preventing the ability to achieve denaturation and causing longer

temperature transitions that could contribute to a higher likelihood of non-specific

products. Similarly, a hot climate could diminish cooling rates and prevent the ability

to reach low annealing temperatures since the warmest conditions observed in some

places approaches the low end of the annealing regime. A non-contact temperature

measurement approach using a thermal camera was also explored and showed promise

for future applications of our technology. Further discussion of this topic can be found

in Section 5.2.2.

We combined our microchip, radiative heating system, and temperature measure-

ment technique to develop two platforms: 1) an open-loop approach with real-time

fluorescence monitoring capabilities and 2) a closed-loop approach capable to thermal
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multiplexing of multiple samples. Each of the platforms were used to demonstrate

the unique power of our laser-mediated thermocycling system to achieve accurate

temperature control, rapid sample processing, real-time detection, and independent

control of each reaction chamber (i.e., thermal multiplexing) to operate at the ideal

conditions for each target screened. The further application of our technology toward

virus detection is presented in Chapter 4.
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CHAPTER IV

VIRUS DETECTION

The validation of our microfluidic platform was conducted by performing amplifica-

tions of various genetic targets, demonstrating the ability of our polymer microchip

(detailed in Chapter 2) and laser-mediated thermocycler (detailed in Chapter 3) to

sensitively and specifically detect viruses. We first established the viability of our

microchips for PCR through the use of a custom water bath thermocycler. Once

protocols were proven with our microchips, we proceeded to perform these reactions

using the our laser-based thermocycling system. We then examined the performance

of our system to assess its viability as a diagnostic instrument.

4.1 Water bath PCR testing

During the development of our microchips, we realized the need for a method of testing

the compatibility of our microchips with the chemistry of PCR independent of our

laser heating system. Initially, a 96-well plate thermocycler (Eppendorf, Mastercycler)

with an in-situ block adapter, which is designed to accommodate glass slides, was used

for thermocycling our microchips but insufficient temperature homogeneity through

the thickness of the microchip prevented accurate thermocycling. An experiment in

which a microchip with a thermocouple inserted into a reaction chamber was run

on the plate thermocycler revealed a significant temperature gradient between the

sample and the block adapter on which the microchip was installed. This resulted in

under-heating of the sample. Efforts to bias the setpoints to counteract the gradient

were mostly unsuccessful.

Instead, a water bath thermocycling system was developed. This device was intro-

duced in Section 2.4.3 and can be seen in Figure 24. It functioned as a 2-axis gantry
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system for transferring microchip(s) between a set of three beakers, each maintained at

the three particular setpoints required for the denature, anneal, and extension steps.

A LabVIEW program provided the control interface for selecting the thermocycling

parameters. Initial tests using a microchip with an embedded in-chamber thermocou-

ple revealed the transition times for shifting between various setpoints, which proved

to be longer than the transition times observed for our laser-mediated heating and

even conventional thermocyclers. This made sense considering the insulating behav-

ior of the polymers, its thickness, and the indirect delivery of heat from water to

sample. From this characterization, conservative hold times were programmed to al-

low enough time for samples to reach steady state. In addition, the extended initial

denature step typically included in thermocycling routines was omitted for the water

bath tests since this simplified the programming and seemed unnecessary considering

the relatively long denature hold used for every cycle. Thermocycling parameters for

these tests can be found in Table 7 in Appendix A.

Since the constraints of radiation delivery were not applicable to the microchips

when using the water bath system, special versions were fabricated with arrays of

eight chambers. This enabled much higher throughput per experiment and provided

a more user-friendly way to screen serial dilutions on a single microchip to test limits

of detection.

Samples were prepared according to the protocols provided in Appendix A. Once

the 1 µL samples were loaded into the microchip(s), the ports were sealed. Early

experiments made use of heat-resistant adhesive-backed polypropylene film (Excel

Scientific, ThermalSeal) for this purpose but extended exposure to the heated water

baths weaker the adhesive and sample loss via leakage was occasionally encountered.

Instead, a custom clamping fixture was fabricated by laser cutting 3 mm thick PMMA

into rectangular frames large enough to sandwich our microchip with an overhang

featuring holes to secure the two frames with 8-32 machine screws and nuts. A
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Figure 53: Sample electropherograms for the detection of influenza A (left) and
influenza B (right) extracted from clinical patient samples. Amplifications were per-
formed in 1 µL reaction volumes using our polymer microchip and water bath ther-
mocycling system. The outer peaks correspond to the markers used for quantification
while the other unlabeled peaks resulted from primer-primer interactions and non-
specific amplification products due to the presence of host DNA.

laser cut gasket was applied to one side of the microchip along the ports and the

PMMA frames were clamped over the microchip, sealing the ports and keeping the

samples contained for the duration of the thermocycling. After cycling, the clamping

fixture was removed, samples were extracted from the microchip using a pipettor and

transferred to a 0.2 mL PCR tube for storage at 4◦C until ready for detection via

electrophoresis using the Agilent Bioanalyzer.

The water bath system was used to successfully amplify a variety of genetic targets,

both DNA and RNA, as shown throughout this thesis, including purified λ-phage and

Epstein Barr virus (EBV) DNA. Initial tests of microchip passivation strategies made

use of the water bath system for a comparison of λ-phage amplifications (Figure 28).

Sensitivity tests using the EBV amplification also made use of the water bath system

to demonstrate successful on-chip reactions down to approximately 100 starting copies

(Figure 29). The ability of our microchip to amplify viral targets in a clinical sample

was also tested for RNA viruses Influenza A and Influenza B. Leftover nasopharyngeal

swab samples from pediatric patients with known infections were provided by Egleston

Pediadric Hospital. As detailed in Appendix A, nucleic acids were extracted using

the Qiagen QIAamp Viral RNA Mini Kit and prepared using a one-tube RT-PCR

premix. A fourth hot plate and beaker was used for the initial reverse transcription
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before being thermocycled using the automated system. Resulting electropherograms

are shown in Figure 53 indicating the detected 100 bp peaks for the influenza targets

as well as many non-specific peaks due to primer-primer interaction and the presence

of host (human) DNA.

4.2 Experimental procedures

Once a reaction had been confirmed as compatible with our microchip using the

water bath thermocycler, the protocol was ready to be demonstrated using our laser-

mediated thermocycler. Although the reaction chemistry translated between ther-

mocycling methods, we needed to address factors unique to our instrument such as

alignment, calibration, and thermocycling parameters.

First, the layers of our microchips were micro-milled in large batches using the

techniques described in Section 2.2. By producing many devices during a single session

with the CNC milling center, any errors such as inaccurate zeroing of tooling are

uniform over the entire batch of microchips and therefore avoiding potential problems

of dimensional inconsistencies. Microchip layers were then cleaned by sonicating in

deionized water, rinsing with isopropanol and water, and drying with compressed

nitrogen. A calibration microchip was first thermally bonded with thermocouples

aligned for in-chamber temperature measurement. After the 30 min bonding process,

the fixture was allowed to cool for 30 min. Then standard microchips with near-

chamber embedded thermocouples were bonded, with care given to the thermocouple

tip position to ensure chip-to-chip consistency.

The calibration microchip was first installed in the system, using the alignment

pins on the pressure manifold to mount the microchip against the sealing gaskets then

sliding the manifold over the 6 mm construction rods of the optical system. Toner-

coated burn paper (see Figure 34) was then secured over each reaction chamber and

the two lasers, driven by a common power supply, were used to irradiate the microchip
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and determine the approximate alignment of the laser focal spots. If necessary, small

adjustments to collimating lens position were made using the x-y translating mounts

housing the lenses. After removing the burn paper, the pressure manifold / microchip

assembly was unmounted from the optical system and the two reaction chambers were

loaded with 1 µL mock samples consisting of reaction buffer using the mineral oil

technique described in Section 2.4.3. The pressure manifold with a loaded calibration

microchip was remounted to the optical system and the pressure lines were attached

to the manifold with luer connectors and the regulated N2 tank was opened to supply

40 psi of pressure. The lasers were then powered, allowing the reaction chambers to

reach steady state and small adjustments to collimating lens positions were made, if

needed, to match the temperatures in each reaction chamber.

Next, the calibration process, detailed in Section 3.2 and briefly summarized here,

was carried out to generate a correlation between laser driving voltage and approx-

imate in-chamber temperature. With the lasers turned off, the pressure was vented

and the calibration microchip was unmounted from the system and replaced with a

standard microchip to be used for the second half of the calibration. By repeating

the series of laser driving voltages used for heating the calibration microchip, near-

chamber temperatures could be recorded and correlated with approximate in-chamber

temperature. Based on this correlation, a series of calibration curves were generated

by pivoting the original calibration around the common room temperature measure-

ments. This was done to correct for the bias introduced by the interactions between

the in-chamber thermocouple and laser radiation when collecting the data with the

calibration microchip. By testing each calibration curve with our λ-phage amplifi-

cation protocol and locating the calibration that provided maximum PCR yield, the

accurate calibration curve was identified.

Since slight variations in the thermal dynamics of our microchips due to the toler-

ances of manual positioning of the thermocouple tips resulted in a need for tuning our
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calibrations for each unique microchip. Since the need to repeat the entire calibra-

tion process for every microchip would be prohibitively time-consuming if screening

multiple subjects, we first examined the possibility of repeated use for our microchip.

Although they were designed to be low-cost and therefore disposable, avoiding poten-

tial cross-contamination and the need for a thorough cleaning process, the ability to

reuse our microchips during the testing phase would save time. We tested the viability

of reuse by running λ-phage amplification in one of the reaction chambers, cleaning

the chamber by rinsing with isopropanol and deionized water and drying with com-

pressed N2, then repeating the amplification. This was performed eight times and

the results from end-point detection of the PCR products are shown in Table 3. It

was found that after two to three tests, the device was unable to demonstrate suc-

cessful amplification. We suspect the cause of this limited use is a combination of the

microscale damage (e.g., crazing) induced by heat and pressure experienced by the

reaction chamber surfaces during operation and the effects of isopropanol during the

cleaning process. We therefore limited the use of our microchips to two runs before

delaminating the microchip, removing the thermocouples, and disposing of the used

microchip layers as biohazards waste.

Table 3: Repeated use of our microchips exhibits stable thermal performance, as
indicated by consistent heating and cooling times, but decreasing PCR yield until the
device is unable to perform successful amplification.

sample heating time (sec) cooling time (sec) PCR yield (ng/µL)
1 21.14 ± 0.66 16.76 ± 0.45 29.33
2 20.32 ± 0.57 17.54 ± 1.01 23.27
3 18.32 ± 1.00 15.94 ± 0.70 15.89
4 15.34 ± 0.72 15.61 ± 0.40 0.84
5 14.10 ± 1.04 16.42 ± 0.21 0
6 14.90 ± 0.28 15.20 ± 0.61 0
7 15.50 ± 0.72 15.50 ± 0.63 0
8 16.60 ± 0.30 16.24 ± 0.67 0

Since we could only safely use a microchip twice, we developed a method for
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quickly calibrating new microchips. It was found that we could use the original

calibration curve and adjust only the slope for the calibration of the new microchip.

This adjustment was guided by the measurements of the heating rates of the new

device. This was performed by loading the microchip with reaction buffer and running

the first ten cycles of our λ-phage thermocycling routine. Heating rates during the

ramping phase from extension to denature steps were then averaged and compared

the those exhibited by the original, accurately calibrated microchip. If heating rates

are faster, the slope of the calibration curve is decreased and vice versa. Within a few

iterations, a reliable heuristic had been developed for calibrating all new microchips,

dramatically reducing the preparation time required for each experiment.

The first reaction used to validate our system was λ-phage amplification. In

determining the ideal thermocycling parameters for this reaction, we began by imple-

menting the same conditions used with a conventional thermocycler. Next, following

advice from collaborators who had demonstrated rapid thermocycling with a mi-

crofluidic system using minimal temperature hold times, we did the same for our

thermocycling program, arriving at hold times of 4 sec for denaturing, 5 sec for an-

nealing, and 5 sec for extension, resulting in a total runtime of 10 min [118]. This

success with reducing hold times agrees with the revised thermocycling paradigm that

acknowledges the ranges of temperatures at which the biochemical activity necessary

for PCR occurs [167].

Once our methods had been proven effective for the repeatable amplification of

λ-phage, more challenging reactions such as the herpesvirus amplification, specifically

using Epstein Barr virus (EBV) as template, were tested, making use of consensus

degenerate primers as developed by the CDC. This particular reaction required an

annealing temperature of 48◦C, making it an ideal candidate for demonstrating ther-

mal multiplexing with our two-chamber system. After running the EBV reaction in

both chambers to confirm our capability of performing the amplification, we tuned
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the thermocycling parameters and discovered that only slightly reduced hold times

(see Table 8 in Appendix A) generated the highest PCR yields.

The λ-phage and EBV amplifications were then performed simultaneously on a

single microchip using thermal multiplexing. Although the λ-phage thermocycling

could be performed faster, the longer hold times required for EBV amplification were

used for the multiplexed operation, since the thermocycling needed to be synchro-

nized and the longer hold times were not detrimental to λ-phage amplification. The

preliminary results for this demonstration were presented in Section 3.3.2. In order

to establish repeatable performance and illustrate the utility of our novel multiplex-

ing approach, a set of 12 microchips were used to process 24 samples, with λ-phage

loaded in to chamber 1 and EBV loaded into chamber 2, to test (in triplicate) four

“annealing modes”: 1) low annealing, in which both samples were cycled with an

annealing temperature of 48◦C; 2) high annealing, in which both samples were cycled

with an annealing temperature of 68◦C; 3) average annealing, in which both sam-

ples were cycled with an annealing temperature of 58◦C; 4) thermally multiplexed

annealing, in which samples were cycled independently with annealing temperatures

of 68◦C and 48◦C for chambers 1 and 2, respectively.

The protocols listed in Appendix A were followed for preparing our microfluidic

samples. Template concentrations of 5.4 pg/µL (1×105 copies/µL) and 500 fg/µL

(1×105 copies/µL) were used for λ-phage and EBV, respectively, resulting in 540 fg

of λ-phage and and 50 fg of EBV. (Note: The λ-phage DNA was provided in purified

form with a known concentration while EBV template was supplied by the CDC,

which they use for positive controls during herpesvirus screening, and was quantified

using the procedure listed in Appendix A.) These dilutions provided 1,000 starting

copies for each reaction. Following the execution of all twelve microchip runs, PCR

products were detected by electrophoresis.
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4.3 End-point detection

Electrophoretic detection via Agilent 2100 Bioanalyzer, which requires only 1 µL sam-

ple volumes, was used to determine the performance of our system. As acknowledged

in previous sections, end-point detection can only be considered semi-quantitative,

which proved to be suitable for measuring the basic trends exhibited by the data.

The results for our testing of the four “annealing modes” described above are shown

in Table 4, reported as yields, which are measured by the Bioanalyzer by comparing

detected peaks to markers of known concentration included with each sample loaded

into the instrument for detection. The corresponding electropherograms for the four

data sets are shown in Figures 54–57.

As the data reveals, when microchips were run with identical annealing tempera-

tures, only the reaction operating at its ideal annealing condition was successful while

the other failed, with the exception of one of the λ-phage samples that produced a

detectable peak when run with the non-ideal low annealing temperature of 48◦C. This

Table 4: Detection results for λ-phage and EBV amplification using our laser-
mediated thermocycler to test four distinct thermal conditions to demonstrate the
advantage of thermal multiplexing for optimal performance. Each condition was
tested in triplicate.

annealing
mode

microchip
annealing temp (◦C) PCR yield (ng/µL)
chamber 1 chamber 2 chamber 1 chamber 2
λ-phage EBV λ-phage EBV

low
1

48
0.13 11.16

2 0 6.38
3 0 8.58

high
4

68
25.14 0

5 9.16 0
6 8.20 0

average
7

58
0.46 0.56

8 0.40 1.29
9 0.50 0.50

thermally
multiplexed

10
68 48

11.71 12.31
11 5.12 8.95
12 7.33 10.35
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chamber 1
(λ-phage, 500 bp amplicon)

chamber 2
(EBV, 600 bp amplicon)

microchip 1:

microchip 2:

microchip 3:

no peak

no peak

0.13 ng/µL 11.16 ng/µL

6.38 ng/µL

8.58 ng/µL

Figure 54: Electropherograms for dual-chamber PCR using our polymer microchip
and laser-mediated thermocycler. Both samples were cycled in parallel at the low an-
nealing temperature of 48◦C, ideal for EBV amplification. (540 fg λ-phage template,
50 fg EBV template, n=3)

is not surprising considering the tendency for primers to anneal within a large range

of temperatures under its melting temperature. A major consequence of operating at

an excessively low annealing temperature not captured with this demonstration is the

appearance of non-specific products due to non-specific annealing observed when host

DNA is present. Since only purified template was used for these experiments, 100%

specificity was observed as expected. Average yields at the low annealing condition

were 0.04 and 8.71 ng/µL for λ-phage and EBV, respectively. For the high annealing

condition, average yield was 14.17 and 0 ng/µL for λ-phage and EBV, respectively.

When the microchips were run at the average annealing temperature, weak perfor-

mance was observed as indicated by the relatively low yield for all samples. Although

still detectable with the 1,000 starting copies used here, more sensitive detections

would most likely be impossible. Average yields at the low annealing condition were

0.45 and 0.78 ng/µL for λ-phage and EBV, respectively.
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chamber 1
(λ-phage, 500 bp amplicon)

chamber 2
(EBV, 600 bp amplicon)

microchip 4:

microchip 5:

microchip 6:

no peak

no peak

25.14 ng/µL

9.16 ng/µL

8.20 ng/µL

no peak

Figure 55: Electropherograms for dual-chamber PCR using our polymer microchip
and laser-mediated thermocycler. Both samples were cycled in parallel at the high
annealing temperature of 68◦C, ideal for λ-phage amplification. (540 fg λ-phage
template, 50 fg EBV template, n=3)

When thermal multiplexing was employed for the dual amplification at the ideal

conditions for each reaction, electropherograms indicate efficient amplifications. Av-

erage yields for the multiplexed annealing conditions were 8.05 and 10.54 ng/µL for

λ-phage and EBV, respectively. These experiments demonstrate the importance of

operating at the optimal thermal conditions and the ability of our instrument to

reliably provide this functionality.

4.4 Conclusions

Having established and validated novel methods for fabricating and characterizing

a microfluidic PCR platform featuring a low-cost microfluidic device for handling

1 µL samples and a laser-based thermocycling system for rapid heating and accurate

temperature control, we sought to apply our technology towards practical applications

in virus detection.
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chamber 1
(λ-phage, 500 bp amplicon)

chamber 2
(EBV, 600 bp amplicon)

microchip 7:

microchip 8:

microchip 9:

0.46 ng/µL

0.40 ng/µL

small peak

outside detection

limit

0.56 ng/µL

1.29 ng/µL

0.50 ng/µL

Figure 56: Electropherograms for dual-chamber PCR using our polymer microchip
and laser-mediated thermocycler. Both samples were cycled in parallel at the average
of the two targets’ ideal annealing temperatures, 58◦C. (540 fg λ-phage template,
50 fg EBV template, n=3)

Our initial efforts to explore the variety of microfluidic PCR protocols and their

compatibility with our microchip made use of a robotic system we built to perform

PCR with our microchips independent of our infrared laser heating system to isolate

issues specific to our microchip. This allowed us determine the optimal passivation

strategy of loading samples with mineral oil to eliminate dead volume and reduce

inhibitory effects of adsorption. We also demonstrated high sensitivity amplification

down to 100 starting copies of EBV template.

We next demonstrated virus detection using our complete platform, including the

harnessing of thermal multiplexing to perform efficient PCR on distinct genetic targets

requiring their own unique thermal conditions. A detailed procedure was developed

for preparing our microchips to ensure repeatable performance, including a protocol

for first performing an baseline calibration and then using an abbreviated calibration

technique for subsequent devices to expedite processing of multiple samples while
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chamber 1
(λ-phage, 500 bp amplicon)

chamber 2
(EBV, 600 bp amplicon)

microchip 10:

microchip 11:

microchip 12:

11.71 ng/µL

5.12 ng/µL

7.33 ng/µL

12.31 ng/µL

8.95 ng/µL

10.35 ng/µL

Figure 57: Electropherograms for dual-chamber PCR using our polymer microchip
and laser-mediated thermocycler. Samples were cycled independently using thermal
multiplexing via optical modulation, each run at its optimal annealing temperature
of 68◦C and 48◦C for λ-phage and EBV amplification, respectively. (540 fg λ-phage
template, 50 fg EBV template, n=3)

accounting for inherent fabrication inconsistencies to maintain accurate temperature

control. These techniques were applied to the co-amplification of λ-phage and EBV

template on a single microchip in separate chambers. By performing reactions in

triplicate and comparing our thermal multiplexing approach to thermocycling with

uniform temperatures (i.e., no independent control of chamber-to-chamber tempera-

ture), as a user would be restricted to if using a conventional thermocycler, the power

of our technology was demonstrated. Future work will focus on scaling the system for

higher throughput and testing a greater variety of genetic targets, including clinical

samples.
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

Despite the availability of powerful bioanalytical tools, the need for more sophisti-

cated and more easily deployable technologies for the detection of pathogens shows no

signs of diminishing. There is an urgent need to provide timely treatment of not only

routine infections such as influenza and RSV, which will reduce cases of needless hos-

pital admission and minimize the growing problem of overprescription of antibiotics,

but also the early detection and surveillance of pandemic infections. Molecular diag-

nostics, specifically the polymerase chain reaction (PCR), have provided some of the

most effective solutions to addressing this need. But available PCR instrumentation

has yet to deliver the speed, usability, deployability, and financial practicality required

of a system capable of meeting the most demanding needs of pathogen detection sce-

narios, as evidenced by current news headlines regarding the Ebola virus outbreak.

There are widespread complaints regarding the lack of appropriate tools for efficiently

detecting the virus. Microfluidics show the greatest promise for reducing volumes and

increasing the speed of analysis, but the state-of-the-art microfluidic PCR instrumen-

tation (research-grade and commercial) has introduced only incrementally improved

performance while still operating within the paradigms of conventional instruments.

In addition, complexity and costs of microfluidic devices remain prohibitively high

for many potential users, especially in low resource settings.

Towards the development an instrument to fill this void and overcome the chal-

lenges of high performance yet affordable pathogen detection, we designed, fabricated,

and validated a PCR platform capable of sensitive, multiplexed amplification using

1 µL sample volumes. Chapter 2 describes the development and testing of a low-cost
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polymer microchip. Finite element modeling guided the design of our reaction cham-

bers, allowing us to simulate the thermal response of a variety of chamber geometries

and spacing when undergoing radiative heating. Fabrication by micro-milling proved

to be an effective technique for prototyping devices and enabled three-dimensional ge-

ometries difficult to achieve with traditional microfabrication methods. Next, a sys-

tematic study of geometry and material-related reaction inhibition was conducted,

combining an experimental exploration of the phenomenon with the groundwork

for a theoretical model to predict inhibition effects due to irreversible adsorption

of reagents. Chapter 3 details the construction of both open-loop and closed-loop

temperature control systems to perform thermocycling with our microchip. First, an

optical system for delivering and modulating infrared radiation to our microchip was

built and tested. Next, a temperature feedback system was developed in which em-

bedded thermocouple provide indirect measurement of sample temperature through

a rigorous calibration process. An open-loop version of our instrument was first used

to perform quantitative PCR towards the application of rapid gene expression mea-

surement. Next, a closed-loop version was built to perform two simultaneous amplifi-

cations, making use of real-time temperature feedback for more complex operations,

including the preliminary demonstration of thermal multiplexing. Finally, Chapter 4

covers the implementation of our complete platform towards repeatable and sensitive

thermally multiplexed amplification of λ-phage and Epstein Barr virus (EBV) tar-

gets, demonstrating our instrument’s ability to operate at the extremes of potential

annealing temperatures and showing the importance of amplifying at optimal thermal

conditions compared to a compromised condition, as one would be restricted to with a

conventional instrument. A comparison of our platform to commercial PCR technolo-

gies can be seen in Table 5. Although the state of the art instrumentation typically

has higher sample capacity, integration with upstream processing (e.g. extraction

as performed with the FilmArray system), and real-time detection capabilities, our
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microfluidic system offers several advantages, notably the low sample input volume

(as distinct from reaction volume, which can be on the order of a few nanoliters for

instruments such as those offered by Fluidigm), and the ability to achieve thermally

multiplexed conditions. Factors that are difficult to quantify or unpublished, such

as ease-of-use and thermal accuracy, were not considered for this comparison but are

important nonetheless.

Table 5: Comparison of our microfluidic platform with common PCR instrumenta-
tion.

Biorad
MJ Mini

Roche
LightCycler 2.0

Fluidigm
EP1

BioFire
FilmArray

our system

sample volume 5-100 µL 10–100 µL 4–8 µL 200 µL 1 µL
sample capacity 48 32 12 1 2
sample container
disposability

single use single use
single or

multiple use
single use single use

sample container
cost per test

$0.10 $0.75 $500 $150 $0.50

instrument
cost

$4k $60k $100k $40k $4k*

heating
modality

conductive convective conductive conductive radiative

max ramping
rate (◦C/s)

3 20 5 2 60

thermal
capabilities

uniform or
gradient

uniform uniform uniform multiplexed

sample
recoverable?**

yes yes no no yes

* estimate based primarily on materials and hardware costs
** important for downstream analysis such as sequencing

Cost was considered throughout the development of our instrument, especially in

the design of our microchip. By avoiding traditional microfabrication techniques and

pursuing low-cost materials such as PMMA to yield a disposable device, microchip

cost can be estimated at around $0.50 per device. This is based on material and

labor cost and discounts one-time investments such as a capable CNC vertical milling

center, which in the case of the Haas OM-1A costs $60,000, as well as tooling, which

totaled approximately $100. The cost of the laser-mediated thermocycling system

built for our two-chamber microchip can be broken down as follows – Infrared laser
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and accompanying electronics (e.g., driver, power supply): $500; Optical compo-

nents for alignment, collimation, and modulation: $750; Temperature measurement

system, including thermocouples and signal conditioning circuitry: $500; Data acqui-

sition module: $2,000. These cost estimates combine to total $3,750. Some of these

figures represent overestimates since most of the off-the-shelf and custom items were

purchased in small quantities. Lower unit prices would be paid for production scale

orders. Costs that were not accounted for in this estimate include custom fabricated

parts, such as the pressure manifold, and software, since although NI LabVIEW was

used for our programming and user interface purposes, a lower level program with

a custom GUI would be developed for a commercial version of the instrument. The

greatest opportunity for cost savings is data acquisition hardware, since the National

Instruments DAQ module used in this work, USB-6221 BNC, offers far more features

than we require. A custom PCB would eventually be fabricated to perfectly match

our system specifications to provide significant cost savings.

5.1 Major contributions

To summarize the major contributions of this work:

• Generalized model of radiative heating in microfluidic devices: A gen-

eralized model was developed for the prediction of thermal response for any com-

bination of radiation source and device given optical properties of the source,

device geometry, and substrate material properties [178].

• Fabrication method for polymer microfluidics: Instead of using tradi-

tional microfabrication methods, a technique was developed combining micro-

milling and thermal bonding. Unlike most microfabrication methods, it accom-

modates a variety of materials, simplifies prototyping, offers more options for

three-dimensional geometries, and yields a durable device [179].
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• Open and closed-loop control schemes for microfluidic thermocycling:

Both open-loop and closed-loop systems were developed for thermocycling with

our microfluidic device. Open-loop offers ease-of-use and straightforward inte-

gration with real-time fluorescent monitoring. Closed-loop provides more pre-

cise, flexible, and scalable temperature control.

• Highly sensitive PCR using consensus degenerate reactions from the

CDC: Performed PCR with consensus degenerate primers, a CDC chemistry

used for screening any virus, known or unknown, within a particular viral fam-

ilies. Sensitivity down to 100 copies was demonstrated. This is a challenging

type of reaction that had never been done with a microfluidic device [169].

• qRT-PCR for stem cell engineering: Performed quantitative, reverse tran-

scription PCR with RNA extracted from mouse embryonic stem cells. This can

serve as a platform for rapid genetic feedback to drive stem cell engineering

studies [87].

• Systematic study of the role of material and geometry in PCR inhi-

bition: Conducted a systematic study of the role of material and geometry on

PCR inhibition in microfluidics. Despite pervasive concern over this issue, only

anecdotal accounts of addressing inhibition issues associated with high SA:V

environments had been reported. We quantitatively studied the effect of SA:V

on PCR yield for multiple materials and passivation strategies along with a

basic theoretical model of the inhibition process [169].

• Sample loading technique for improving PCR yield: Developed a sample

loading method that eliminates dead volume and provides optimal passivation

using mineral oil to partially encapsulate the PCR sample, enabling more sen-

sitive detection than prevailing methods.
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• Invented mode of multiplexed temperature control: Invented a mode of

multiplexed temperature control that enables independent control of tempera-

ture in adjacent PCR reaction simultaneously.

• IRB-approved work with clinical samples: Applied our microchip tech-

nology to detect influenza A and B from patient samples sourced from Egleston

Pediatric Hospital (CHOA).

5.2 Future work

5.2.1 PCR inhibition model

The theoretical model of adsorption-based PCR inhibition presented in Section 2.4.2

was useful in its application for the characterization of the polymers tested in our

experimental study, quantifying their suitability as PCR device substrates. Future

efforts should be dedicated to expanding the model for more deterministic purposes,

combining geometry with known material properties of the substrate and considering

the adsorption of other reagents. The incorporation of the temperature dependence

of molecular diffusion would also better capture the mechanisms at work. Another

important step towards a better understanding of adsorption-based PCR inhibition

would be an experimental study in which reagent concentrations are independently

varied better delineate the molecules most prone to irreversible adsorption.

5.2.2 Temperature feedback

One of the deficiencies of our current instrument that would need to be addressed

for future iterations is the temperature measurement system. The task of manu-

ally embedding and calibrating the thermocouples used for monitoring near-chamber

temperature is one of the most impractical steps in the use of our platform in its cur-

rent state. To avoid the tedious and error-prone step of embedding thermocouples, a

reusable comb-like device consisting of a series of thin-film temperature probes arrayed
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on a rigid substrate could be inserted into the series of slots running along the mi-

crochip and terminating along the edge of each reaction chamber with an adequately

sizes barrier dividing the chamber and probe to avoid deformation due the heat and

pressure. Another measure to improve the temperature measurement system would

avoid the need for a special calibration microchip with thermocouples measuring bi-

ased in-chamber temperature; instead, a standard microchip would be filled with a

temperature sensitive dye (e.g., Rhodamine B), mounted on an inverted fluorescence

microscope, and heated to various temperatures. Using a known calibration between

fluorescence and temperature, the in-chamber temperature could be directly corre-

lated with the near-chamber measurement, obviating the process of iterative PCR

attempts to locate an accurate calibration. Finally, the most desirable configuration

would be completely non-contact (i.e. all optical) through the implementation of a

thermal camera for temperature sensing. The potential for this method has already

been demonstrated with our microchip (see Section 3.2.2) and with more sophisti-

cated calibration methods and an enclosure for consistent environmental conditions,

this approach would yield a simple and scalable system for microfluidic temperature

measurement.

5.2.3 Scaling

Increasing the scale of our instrument would be a critical step for a commercially

viable configuration of our technology. The two-chamber version reported in this

thesis was for proof-of-concept purposes. The instrument would need to perform am-

plification of at least eight targets to be diagnostically useful, since the parallelized

screening made possible with our technology would need to cover not only a range of

potential infectious agent but also controls. Towards this scaling, we have already con-

ceptualized an eight-chamber system as shown in Figure 58. Fiber-coupled infrared

lasers would be constrained under an optical system for focusing and modulating each
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optical fiber

fiber guide

lenslet array

microshutter array
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laser beam
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viral DNA

10 mm

Figure 58: A concept for increasing the throughput of our PCR platform, using
fiber-coupled infrared lasers to deliver radiation to an array of 1 µL reaction chambers
spaced at the minimum 3 mm. An optical system (inset), including an optical shutter
array, provides spatial modulation for thermal multiplexing.

channel of radiation. Reaction chamber spacing could be collapsed to its minimum of

3 mm to maintain adequate thermal isolation while minimizing device footprint. A

lower power alternative to solenoids would be implements for modulation. The most

elegant solution would be a custom liquid crystal optical shutter with individually

addressable pixels, which can easily be fabricated by companies such as Boulder Non-

linear systems, who supplied a quote for such a device. The major downsides to this

option would be cost and baseline attenuation, since 50% of incident radiation would

be absorbed due to the polarization dependence of the liquid crystal system.

To enhance the ease of use of a scaled version of our instrument, a future addition

would be the use of lyophilized primers immobilized in each chamber. By including

the unique primers for each reaction in each chamber, sample preparation and loading

would require only a single reaction mix and one-step microchip loading.
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APPENDIX A

PROTOCOLS

A.1 Nucleic acid extraction

Nasopharyngeal swabs provided by collaborators at Egleston Pediatric Hospital were

screened for three possible RNA viruses (Influenza A, Influenza B, and RSV). To

prepare the nucleic acids for RT-PCR, RNA extraction was performed using a Qiagen

QIAamp Viral RNA Mini Kit.

A.2 PCR, qPCR, RT-PCR, and qRT-PCR preparation

All PCR reactions were prepared from a commercial master mix (Bioneer AccuPower

PCR PreMix). The premix consists of a lyophilized pellet of 2.5 U Top DNA poly-

merase, 250 µM dNTPs (dATP, dCTP, dGTP, dTTP), 10 mM Tris-HCl (pH 9.0),

30 mM KCl, 1.5 mM MgCl2, tracking dye, and stabilizer. Similarly, all RT-PCR re-

actions were prepared from a commercial master mix (Bioneer, AccuPower one-step

RT-PCR PreMix). This premix consists of M-MLV Reverse Transcriptase, RNA de-

pendent DNA polymerase, and a thermostable DNA polymerase in a lyophilized mix

of dNTPs, reaction buffer, RNase inhibitor, tracking dye, and stabilizer. For use with

our open-loop system, quantitative PCR and RT-PCR reactions were prepared using

the same master mixes with the added component of an intercalating dye. A cooling

rack was used during all steps of the reaction preparation to maintain reagents near

0◦C. All laboratory bench surfaces and pipettes were decontaminated using DNA

AWAY and RNase AWAY.
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To prepare (RT-)PCR mix:

1. Add 44 µL of nuclease-free water* to a 50 µL premix tube.

2. Vortex until pellet is dissolved and spin down.

3. Add 1 µL of 20 µM** forward and reverse primers.

To prepare (RT-)PCR reaction mix:

• For a conventional 50 µL reaction, add 5 µL template DNA to the master mix.

• For a conventional 5 µL reaction, divide the 45 µL master mix into ten 4.5 µL

aliquots and add 0.5 µL template DNA to each tube.

• For a 1 µL microchip reaction, prepare 5 µL reaction mixes according to the

above step and use 1 µL.

To prepare qPCR master mix:

1. Add 11 µL of nuclease-free water to the 20 µL premix tube.

2. Vortex until pellet is dissolved and spin down.

3. Add 6 µL BSA (1 µg/µL).

4. Add 0.6 µL SYBR Green I (10×).

5. Add 0.4 µL of 20 µM forward and reverse primers.

To prepare qPCR reaction mix:

• For a conventional 20 µL reaction, add 2 µL template DNA to the master mix.

• For a 1 µL microchip reaction, follow the above step to first prepare a 20 µL

reaction mix, divide this into 5 µL aliquots and use 1 µL.
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To prepare qRT-PCR master mix:

1. Add 14.1 µL of nuclease-free water to the 20 µL premix tube.

2. Vortex until pellet is dissolved and spin down.

3. Add 3 µL BSA (1 µg/µL).

4. Add 0.4 µL SYBR Green I (10×).

5. Add 0.75 µL of 10 µM forward primer.

6. Add 0.75 µL of 10 µM reverse primer.

To prepare qRT-PCR reaction mix:

• For a conventional 20 µL reaction, add 1 µL template RNA (109 ng/µL) to the

master mix.

• For a 1 µL microchip reaction, follow the above step to first prepare a 20 µL

reaction mix, divide this into 5 µL aliquots and use 1 µL.

*HyClone, HyPure Molecular Biology Grade Water

**Except for the herpesvirus reaction, which used 50 µM primers

Note: For all conventional reactions, 10 µL of mineral oil (Fisher BioReagents) was added to the

top of the reaction volume.

To quantify Epstein Barr virus (EBV) template DNA: Template concentration is

calculated based on OD and with the known the template size of 4485 bp, copy

numbers were determined. Then the detection limit was calculated as follows:

1. The concentration of primer set A Herpes Virus Engineered positive control

plasmid DNA (EBV) was 94 µg/mL (by OD measurement), primer set A Herpes

Virus Engineered positive control EBV-TA-M-1-1 plasmid DNA was serially
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diluted from 10×10−1 to 10×10−12, nested PCR was performed from 10×10−5

to 10×10−12 dilution according to primer set A Herpes Virus Consensus Primer

PCR Protocol (internal CDC documentation), for first round positive band

appeared at end of 10×10−6 dilution, for second round positive band appeared

at end of 10×10−9 dilution.

2. Calculate the PCR reaction sensitivity using the formula of Calculate RNAPlas-

mid Copy Number Detected in S/PDD/Primer Info (internal CDC documenta-

tion), noting plasmid concentration, MW of plasmid and end point detected.

3. Since the Plasmid concentration of primer set A Herpes Virus Engineered pos-

itive control is 94 µg/mL, the MW of plasmid of primer set A Herpes Virus

Engineered positive control is 4485 bp, the End point detected for Adenovirus

Engineered positive control is 10×10−9 dilution, the sensitivity of Pan primer

set B Herpes Virus PCR assay is 95.5 molecules with 5 µL total nucleotides

acid in total 50 µ PCR reaction using adenovirus engineered positive control

plasmid DNA.

142



A.3 Thermocycling parameters

Table 6: Thermocycling parameters for conventional PCR using a Bio-Rad MJ Mini
for 5–50 µL reaction volumes.

reaction step temperature (◦C) time (sec)

λ-phage

initial denature 95 2 min
denature 95 30 sec
annealing 68 30 sec
extension 72 30 sec
final extension 72 2 min

herpesvirus

initial denature 95 2 min
denature 95 15 sec
annealing 48 30 sec
extension 72 30 sec
final extension 72 7 min

mouse GAPDH

RT 42 1 hr
initial denature 95 5 min
denature 95 10 sec
annealing 56 30 sec
extension 72 30 sec

RSV

RT 42 1 hr
initial denature 95 5 min
denature 95 15 sec
annealing 50 30 sec
extension 72 30 sec
final extension 72 7 min

human β-globin

initial denature 95 2 min
denature 95 5 sec
annealing 60 15 sec
extension 72 20 sec
final extension 72 2 min

influenza A

RT 42 1 hr
initial denature 95 2 min
denature 95 15 sec
annealing 55 30 sec
extension 72 30 sec
final extension 72 7 min

influenza B

RT 42 1 hr
initial denature 95 2 min
denature 95 15 sec
annealing 61 30 sec
extension 72 30 sec
final extension 72 7 min
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Table 7: Thermocycling parameters for microfluidic PCR using our custom water
bath system for 1 µL reaction volumes.

reaction step temperature (◦C) time (sec)

λ-phage

denature 95 1 min
annealing 68 2 min
extension 72 2 min
final extension 72 5 min

herpesvirus

denature 95 1 min
annealing 48 3 min
extension 72 3 min
final extension 72 5 min

mouse GAPDH

RT 42 1 hr
denature 95 1 min
annealing 56 2 min
extension 72 2 min
final extension 72 5 min

RSV

RT 42 1 hr
denature 95 1 min
annealing 50 3 min
extension 72 3 min
final extension 72 5 min

influenza A

RT 42 1 hr
denature 95 1 min
annealing 55 3 min
extension 72 3 min
final extension 72 5 min

influenza B

RT 42 1 hr
denature 95 1 min
annealing 61 3 min
extension 72 3 min
final extension 72 5 min
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Table 8: Thermocycling parameters for microfluidic PCR using our laser platform
for 1 µL reaction volumes.

reaction step temperature (◦C) time (sec)

λ-phage

initial denature 95 1 min
denature 95 10 sec
annealing 68 20 sec
extension 72 20 sec
final extension 72 3 min

herpesvirus

initial denature 95 1 min
denature 95 10 sec
annealing 48 20 sec
extension 72 20 sec
final extension 72 3 min

mouse GAPDH

RT 42 30 min
initial denature 95 1 min
denature 93 10 sec
annealing 56 20 sec
extension 72 20 sec

influenza A

RT 42 30 min
initial denature 95 1 min
denature 95 10 sec
annealing 55 20 sec
extension 72 20 sec
final extension 72 3 min

influenza B

RT 42 30 min
initial denature 95 1 min
denature 95 10 sec
annealing 61 20 sec
extension 72 20 sec
final extension 72 3 min
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APPENDIX B

PCR PRIMERS

Table 9: Primer sequences for all reactions used in the development of our PCR
technologies.

genetic target primer sequence

λ-phage
forward: 5’-GATGAGTTCGTGTTCGTACAACTGG-3’
reverse: 5’-GGTTATCGAAATCAGCCACAGCGCC-3’

herpesviruses
forward: 5’-G(GT)TIGACTTTGCCAGC(TC)T(GC)TACCC-3’
reverse: 5’-GGGAGTC(AC)GTGTC(GC)CCGTA(GT)ATGA-3’

mouse GAPDH
forward: 5’-GCCTCCCGTGTTCCTACC-3’
reverse: 5’-GCCTGCTTCACCACCTTC-3’

RSV
forward: 5’-GTCTTACAGCCGTGATTAGG-3’
reverse: 5’-GGGCTTTCTTTGGTTACTTC-3’

human β-globin
forward: 5’-AACTGTTGGTTTATAGCATTTT-3’
reverse: 5’-AGGAGCTTATTGATAACTCAGAC-3’

influenza A
forward: 5’-GACCRATCCTGTCACCTCTGAC-3’
reverse: 5’-AGGGCATTYTGGACAAAKCGTCTA-3’

influenza B
forward: 5’-TCCTCAAYTCACTCTTCGAGCG-3’
reverse: 5’-CGGTGCTCTTGACCAAATTGG-3’

Note: Primers were purchased in lyophilized form and resuspended to 100 µM to be stored

as stock. Dilutions to 20 µM (expect for herpesvirus, which required 50 µM, and GAPDH,

which required 10 µM) were then made for preparation of the master mix.
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